Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 21(1): 157, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879499

ABSTRACT

BACKGROUND: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.


Subject(s)
Coronavirus Infections , Cystatins , Demyelinating Diseases , Mice, Knockout , Murine hepatitis virus , Animals , Mice , Demyelinating Diseases/pathology , Demyelinating Diseases/metabolism , Demyelinating Diseases/virology , Demyelinating Diseases/immunology , Murine hepatitis virus/pathogenicity , Cystatins/genetics , Cystatins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Mice, Inbred C57BL , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism
2.
Trends Immunol ; 45(3): 158-166, 2024 03.
Article in English | MEDLINE | ID: mdl-38388231

ABSTRACT

Mammalian stem cells govern development, tissue homeostasis, and regeneration. Following years of study, their functions have been delineated with increasing precision. The past decade has witnessed heightened widespread use of stem cell terminology in association with durable T cell responses to infection, antitumor immunity, and autoimmunity. Interpreting this literature is complicated by the fact that descriptions are diverse and criteria for labeling 'stem-like' T cells are evolving. Working under the hypothesis that conceptual frameworks developed for actual stem cells can be used to better evaluate and organize T cells described to have stem-like features, we outline widely accepted properties of stem cells and compare these to different 'stem-like' CD4+ T cell populations.


Subject(s)
Autoimmunity , CD4-Positive T-Lymphocytes , Animals , Humans , Immunologic Memory , Mammals
3.
Proc Natl Acad Sci U S A ; 121(9): e2309153121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386711

ABSTRACT

The molecular mechanisms leading to the establishment of immunological memory are inadequately understood, limiting the development of effective vaccines and durable antitumor immune therapies. Here, we show that ectopic OCA-B expression is sufficient to improve antiviral memory recall responses, while having minimal effects on primary effector responses. At peak viral response, short-lived effector T cell populations are expanded but show increased Gadd45b and Socs2 expression, while memory precursor effector cells show increased expression of Bcl2, Il7r, and Tcf7 on a per-cell basis. Using an OCA-B mCherry reporter mouse line, we observe high OCA-B expression in CD4+ central memory T cells. We show that early in viral infection, endogenously elevated OCA-B expression prospectively identifies memory precursor cells with increased survival capability and memory recall potential. Cumulatively, the results demonstrate that OCA-B is both necessary and sufficient to promote CD4 T cell memory in vivo and can be used to prospectively identify memory precursor cells.


Subject(s)
CD4-Positive T-Lymphocytes , Memory T Cells , Animals , Mice , Immunologic Memory , Memory , Receptors, Interleukin-7 , Trans-Activators , GADD45 Proteins , Antigens, Differentiation
4.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076925

ABSTRACT

Stem-like T cell populations can selectively promote autoimmunity, but the activities that sustain these populations are incompletely understood. Here, we show that T cell-intrinsic loss of the transcription cofactor OCA-B protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to infection. In EAE models driven by antigen re-encounter, OCA-B deletion eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells within the CNS of mice with EAE display a memory phenotype and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B T cell-deficiency specifically protects mice from relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating T cell populations. At relapse, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and the loss of effector gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic stem-like T cells.

5.
Front Cell Neurosci ; 17: 1291255, 2023.
Article in English | MEDLINE | ID: mdl-38099152

ABSTRACT

Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.

6.
Front Immunol ; 13: 931388, 2022.
Article in English | MEDLINE | ID: mdl-36248905

ABSTRACT

Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Murine hepatitis virus , White Matter , Animals , Central Nervous System , Chemokine CXCL1/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Multiple Sclerosis/metabolism , Neutrophils/metabolism , RNA, Messenger , Tetracyclines , White Matter/metabolism
7.
Glia ; 70(5): 875-891, 2022 05.
Article in English | MEDLINE | ID: mdl-35025109

ABSTRACT

Microglia are the primary resident myeloid cells of the brain responsible for maintaining homeostasis and protecting the central nervous system (CNS) from damage and infection. Monocytes and monocyte-derived macrophages arising from the periphery have also been implicated in CNS pathologies, however, distinguishing between different myeloid cell populations in the CNS has been difficult. Here, we set out to develop a reliable histological marker that can assess distinct myeloid cell heterogeneity and functional contributions, particularly in the context of disease and/or neuroinflammation. scRNAseq from brains of mice infected with the neurotropic JHM strain of the mouse hepatitis virus (JHMV), a mouse coronavirus, revealed that Lgals3 is highly upregulated in monocyte and macrophage populations, but not in microglia. Subsequent immunostaining for galectin-3 (encoded by Lgals3), also referred to as MAC2, highlighted the high expression levels of MAC2 protein in infiltrating myeloid cells in JHMV-infected and bone marrow (BM) chimeric mice, in stark contrast to microglia, which expressed little to no staining in these models. Expression of MAC2 was found even 6-10 months following BM-derived cell infiltration into the CNS. We also demonstrate that MAC2 is not a specific label for plaque-associated microglia in the 5xFAD mouse model, but only appears in a distinct subset of these cells in the presence of JHMV infection or during aging. Our data suggest that MAC2 can serve as a reliable and long-lasting histological marker for monocyte/macrophages in the brain, identifying an accessible approach to distinguishing resident microglia from infiltrating cells in the CNS under certain conditions.


Subject(s)
Bone Marrow Transplantation , Coronavirus Infections , Animals , Brain/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism
8.
Front Cell Neurosci ; 15: 668286, 2021.
Article in English | MEDLINE | ID: mdl-34262437

ABSTRACT

Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.

9.
Front Behav Neurosci ; 14: 535885, 2020.
Article in English | MEDLINE | ID: mdl-33192361

ABSTRACT

The radiation fields in space define tangible risks to the health of astronauts, and significant work in rodent models has clearly shown a variety of exposure paradigms to compromise central nervous system (CNS) functionality. Despite our current knowledge, sex differences regarding the risks of space radiation exposure on cognitive function remain poorly understood, which is potentially problematic given that 30% of astronauts are women. While work from us and others have demonstrated pronounced cognitive decrements in male mice exposed to charged particle irradiation, here we show that female mice exhibit significant resistance to adverse neurocognitive effects of space radiation. The present findings indicate that male mice exposed to low doses (≤30 cGy) of energetic (400 MeV/n) helium ions (4He) show significantly higher levels of neuroinflammation and more extensive cognitive deficits than females. Twelve weeks following 4He ion exposure, irradiated male mice demonstrated significant deficits in object and place recognition memory accompanied by activation of microglia, marked upregulation of hippocampal Toll-like receptor 4 (TLR4), and increased expression of the pro-inflammatory marker high mobility group box 1 protein (HMGB1). Additionally, we determined that exposure to 4He ions caused a significant decline in the number of dendritic branch points and total dendritic length along with the hippocampus neurons in female mice. Interestingly, only male mice showed a significant decline of dendritic spine density following irradiation. These data indicate that fundamental differences in inflammatory cascades between male and female mice may drive divergent CNS radiation responses that differentially impact the structural plasticity of neurons and neurocognitive outcomes following cosmic radiation exposure.

10.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999036

ABSTRACT

Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.


Subject(s)
Central Nervous System Infections/immunology , Central Nervous System Infections/virology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions/immunology , Murine hepatitis virus/physiology , Animals , Central Nervous System Infections/genetics , Central Nervous System Infections/pathology , Computational Biology/methods , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Encephalomyelitis/genetics , Encephalomyelitis/immunology , Encephalomyelitis/pathology , Encephalomyelitis/virology , Gene Expression Profiling , H-2 Antigens/genetics , H-2 Antigens/immunology , Host-Pathogen Interactions/genetics , Immunity, Innate , Mice , Sequence Analysis, RNA , Single-Cell Analysis
11.
J Neuroinflammation ; 17(1): 159, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429943

ABSTRACT

BACKGROUND: Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions. METHODS: Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (4He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4-6 weeks later. RESULTS: PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected. CONCLUSIONS: Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.


Subject(s)
Brain/radiation effects , Helium/toxicity , Microglia , Radiation Injuries, Experimental/pathology , Animals , Cognitive Dysfunction/etiology , Cosmic Radiation/adverse effects , Male , Mice
12.
Glia ; 68(11): 2345-2360, 2020 11.
Article in English | MEDLINE | ID: mdl-32449994

ABSTRACT

The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.


Subject(s)
Brain/immunology , Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Microglia/immunology , Murine hepatitis virus/immunology , Organic Chemicals/toxicity , Animals , Brain/drug effects , Brain/virology , Coronavirus Infections/chemically induced , Host-Pathogen Interactions/drug effects , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/virology
13.
Acta Neuropathol Commun ; 7(1): 186, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31753024

ABSTRACT

Numerous clinical studies have established the debilitating neurocognitive side effects of chemotherapy in the treatment of breast cancer, often referred as chemobrain. We hypothesize that cognitive impairments are associated with elevated microglial inflammation in the brain. Thus, either elimination of microglia or restoration of microglial function could ameliorate cognitive dysfunction. Using a rodent model of chronic Adriamycin (ADR) treatment, a commonly used breast cancer chemotherapy, we evaluated two strategies to ameliorate chemobrain: 1) microglia depletion using the colony stimulating factor-1 receptor (CSF1R) inhibitor PLX5622 and 2) human induced pluripotent stem cell-derived microglia (iMG)-derived extracellular vesicle (EV) treatment. In strategy 1 mice received ADR once weekly for 4 weeks and were then administered CSF1R inhibitor (PLX5622) starting 72 h post-ADR treatment. ADR-treated animals given a normal diet exhibited significant behavioral deficits and increased microglial activation 4-6 weeks later. PLX5622-treated mice exhibited no ADR-related cognitive deficits and near complete depletion of IBA-1 and CD68+ microglia in the brain. Cytokine and RNA sequencing analysis for inflammation pathways validated these findings. In strategy 2, 1 week after the last ADR treatment, mice received retro-orbital vein injections of iMG-EV (once weekly for 4 weeks) and 1 week later, mice underwent behavior testing. ADR-treated mice receiving EV showed nearly complete restoration of cognitive function and significant reductions in microglial activation as compared to untreated ADR mice. Our data demonstrate that ADR treatment elevates CNS inflammation that is linked to cognitive dysfunction and that attenuation of neuroinflammation reverses the adverse neurocognitive effects of chemotherapy.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cognitive Dysfunction/metabolism , Doxorubicin/toxicity , Induced Pluripotent Stem Cells/transplantation , Inflammation Mediators/metabolism , Organic Chemicals/therapeutic use , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/therapy , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/therapy , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Organic Chemicals/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
14.
Proc Natl Acad Sci U S A ; 116(22): 10943-10951, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31097580

ABSTRACT

Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s-1). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy⋅s-1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.


Subject(s)
Cognitive Dysfunction , Neuroprotection/radiation effects , Radiation Dosage , Radiotherapy/methods , Reactive Oxygen Species/metabolism , Animals , Brain/pathology , Brain/radiation effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Female , Inflammation , Mice , Mice, Inbred C57BL , Radiotherapy/adverse effects , Reactive Oxygen Species/analysis
15.
Eur J Immunol ; 48(7): 1199-1210, 2018 07.
Article in English | MEDLINE | ID: mdl-29697856

ABSTRACT

Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention.


Subject(s)
Central Nervous System/immunology , Chemokine CXCL1/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neutrophils/immunology , Spinal Cord/immunology , Animals , Autoantigens/immunology , CD11b Antigen/metabolism , Cells, Cultured , Chemokine CXCL1/genetics , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Myelin-Oligodendrocyte Glycoprotein/immunology , Neurogenic Inflammation , Neutrophil Infiltration , Peptide Fragments/immunology , Signal Transduction , Spinal Cord/pathology
16.
Exp Neurol ; 305: 44-55, 2018 07.
Article in English | MEDLINE | ID: mdl-29540322

ABSTRACT

Of the many perils associated with deep space travel to Mars, neurocognitive complications associated with cosmic radiation exposure are of particular concern. Despite these realizations, whether and how realistic doses of cosmic radiation cause cognitive deficits and neuronal circuitry alterations several months after exposure remains unclear. In addition, even less is known about the temporal progression of cosmic radiation-induced changes transpiring over the duration of a time period commensurate with a flight to Mars. Here we show that rodents exposed to the second most prevalent radiation type in space (i.e. helium ions) at low, realistic doses, exhibit significant hippocampal and cortical based cognitive decrements lasting 1 year after exposure. Cosmic-radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in cognitive flexibility and reduced rates of fear extinction, elevated anxiety and depression like behavior. At the circuit level, irradiation caused significant changes in the intrinsic properties (resting membrane potential, input resistance) of principal cells in the perirhinal cortex, a region of the brain implicated by our cognitive studies. Irradiation also resulted in persistent decreases in the frequency and amplitude of the spontaneous excitatory postsynaptic currents in principal cells of the perirhinal cortex, as well as a reduction in the functional connectivity between the CA1 of the hippocampus and the perirhinal cortex. Finally, increased numbers of activated microglia revealed significant elevations in neuroinflammation in the perirhinal cortex, in agreement with the persistent nature of the perturbations in key neuronal networks after cosmic radiation exposure. These data provide new insights into cosmic radiation exposure, and reveal that even sparsely ionizing particles can disrupt the neural circuitry of the brain to compromise cognitive function over surprisingly protracted post-irradiation intervals.


Subject(s)
Cognitive Dysfunction/physiopathology , Cosmic Radiation/adverse effects , Excitatory Postsynaptic Potentials/radiation effects , Exploratory Behavior/radiation effects , Nerve Net/physiopathology , Nerve Net/radiation effects , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Excitatory Postsynaptic Potentials/physiology , Exploratory Behavior/physiology , Hippocampus/physiopathology , Hippocampus/radiation effects , Male , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Mice , Mice, Inbred C57BL , Perirhinal Cortex/physiopathology , Perirhinal Cortex/radiation effects
17.
Sci Rep ; 7: 42885, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220892

ABSTRACT

Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition.


Subject(s)
Brain/radiation effects , Epigenomics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adenosine Kinase/antagonists & inhibitors , Adenosine Kinase/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Brain/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , DNA Methylation/radiation effects , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tubercidin/analogs & derivatives , Tubercidin/pharmacology , Whole-Body Irradiation
18.
Sci Rep ; 6: 31545, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27516055

ABSTRACT

Cranial irradiation for the treatment of brain cancer elicits progressive and severe cognitive dysfunction that is associated with significant neuropathology. Radiation injury in the CNS has been linked to persistent microglial activation, and we find upregulation of pro-inflammatory genes even 6 weeks after irradiation. We hypothesize that depletion of microglia in the irradiated brain would have a neuroprotective effect. Adult mice received acute head only irradiation (9 Gy) and were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia post-irradiation. Cohorts of mice maintained on a normal and PLX5662 diet were analyzed for cognitive changes using a battery of behavioral tasks 4-6 weeks later. PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiation of animals given a normal diet caused characteristic behavioral deficits designed to test medial pre-frontal cortex (mPFC) and hippocampal learning and memory and caused increased microglial activation. Animals receiving the PLX5622 diet exhibited no radiation-induced cognitive deficits, and exhibited near complete loss of IBA-1 and CD68 positive microglia in the mPFC and hippocampus. Our data demonstrate that elimination of microglia through CSF1R inhibition can ameliorate radiation-induced cognitive deficits in mice.


Subject(s)
Behavior, Animal/radiation effects , Cognition/radiation effects , Cranial Irradiation , Hippocampus , Microglia/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Male , Mice , Microglia/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
19.
Proc Natl Acad Sci U S A ; 113(17): 4836-41, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27044087

ABSTRACT

Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.


Subject(s)
Brain Damage, Chronic/therapy , Cell-Derived Microparticles/transplantation , Cognition Disorders/therapy , Cranial Irradiation/adverse effects , Hippocampus/physiology , Neural Stem Cells/ultrastructure , Radiation Injuries, Experimental/therapy , Amygdala/ultrastructure , Animals , Brain Damage, Chronic/etiology , Cells, Cultured , Cognition Disorders/etiology , Genes, Reporter , Habituation, Psychophysiologic/physiology , Heterografts , Hippocampus/ultrastructure , Humans , Male , Microglia/physiology , Neocortex/ultrastructure , Rats , Rats, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...