Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 32(1): 115-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34599730

ABSTRACT

Tetracyanoquinodimethane (TCNQ) on reaction with primary/secondary amines sequels in mono/di-substituted TCNQ adducts known as diaminodicyanoquinodimethanes (DADQ's) possessing astounding optical or non-linear optical characteristics. Crucially, the subtle choice of amine contributes to the outcome of molecular material aspects. Herein, we present a comprehensive investigation of 7,7-bis(N,N-diethylethylenediamino)-8,8-dicyanoquinodimethane (BDEDDQ); manifesting the impact of ethyl group (existing on the di-substituted nitrogen of N,N-diethylethylenediamine (DEED)); on the crystal structure, optical property and thermal stability. Crystallography study revealed supramolecular self-assemblies among molecular dipoles emanating fluorescence enhancement in the solid state compared to solutions. Quantum yields were primarily ~0.2 to 0.4% in solutions and ~56% in the solid. Stokes shift was noticed to be more in solutions (~90 nm) than solid (~67 nm), suggesting excess vibrational relaxations in solutions. Differential scanning calorimetry revealed ~182 °C as the melting temperature. The heat capacity of solid was found to be 5.03 mJs-1. Thermogravimetric analysis conveyed single stage decomposition process initiated by the two amine side chains. Scanning electron microscopy of films prepared by drop casting solutions imparted divergent morphological features, due to different rates of evaporation accompanied by varied growth kinetics. Accordingly, in this paper we have demonstrated the utilization of simple N,N-diethylethylenediamine (DEED) to successfully generate a noteworthy blue emissive molecular material exhibiting semiconducting feature besides reasonable thermal stability.

2.
ACS Omega ; 6(4): 3090-3105, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553926

ABSTRACT

Tetracyanoquinodimethane (TCNQ) is known to react with various amines to generate substituted TCNQ derivatives with remarkable optical and nonlinear optical characteristics. The choice of amine plays a crucial role in the outcome of molecular material attributes. Especially, mono/di-substituted TCNQ's possessing strong fluorescence in solutions than solids are deficient. Furthermore, cation recognition in the solid-state TCNQ derivatives is yet undetermined. In this article, we present solution-enhanced fluorescence and exclusive solid-state recognition of K+ ion achieved through the selection of 4-(4-aminophenyl)morpholin-3-one (APM) having considerable π-conjugation and carbonyl (C=O) functionality, particularly in the ring. TCNQ when reacted with APM, in a single-step reaction, resulted in two well-defined distinct compounds, namely, 7,7-bis(4-(4-aminophenyl)morpholin-3-ono)dicyanoquinodimethane (BAPMDQ [1], yellow) and 7,7,8-(4-(4-aminophenyl)morpholin-3-ono)tricyanoquinodimethane (APMTQ [2], red), with increased fluorescence intensity in solutions than their solids. Crystal structure investigation revealed extensive C-H-π interactions and strong H-bonding in [1], whereas moderate to weak interactions in [2]. Surprisingly, simple mechanical grinding during KBr pellet preparation with [1, 2] triggered unidentified cation recognition with a profound color change (in ∼1 min) detected by the naked eye, accompanied by a drastic enhancement of fluorescence, proposed due to the presence of carbonyl functionality, noncovalent intermolecular interactions, and molecular assemblies in [1, 2] solids. Cation recognition was also noted with various other salts as well (KCl, KI, KSCN, NH4Cl, NH4Br, etc.). Currently, the recognition mechanism of K+ ion in [1, 2] is demonstrated by the strong electrostatic interaction of K+ ion with CO and simultaneously cation-π interaction of K+ with the phenyl ring of APM, supported by experimental and computational studies. Computational analysis also revealed that a strong cation-π interaction occurred between the K+ ion and the phenyl ring (APM) in [2] than in [1] (ΔG binding calculated as ∼16.3 and ∼25.2 kcal mol-1 for [1] and [2], respectively) providing additional binding free energy. Thus, both electrostatic and cation-π interactions lead to the recognition. Scanning electron microscopy of drop-cast films showed microcrystalline "roses" in [1] and micro/nano "aggregates" in [2]. Optical band gap (∼3.565 eV) indicated [1, 2] as wide-band-gap materials. The current study demonstrates fascinating novel products obtained by single-pot reaction, resulting in contrasting optical properties in solutions and experiencing cation recognition capability exclusively in the solid state.

SELECTION OF CITATIONS
SEARCH DETAIL
...