Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Virus Res ; 341: 199331, 2024 03.
Article in English | MEDLINE | ID: mdl-38280436

ABSTRACT

Dengue virus infection in humans ranges from asymptomatic infection to severe infection, with ∼2.5 % overall disease fatality rate. Evidence of neurological manifestations is seen in the severe form of the disease, which might be due to the direct invasion of the viruses into the CNS system but is poorly understood. In this study, we demonstrated that the aged AG129 mice are highly susceptible to dengue serotypes 1-4, and following the adaptation, this resulted in the generation of neurovirulent strains that showed enhanced replication, aggravated disease severity, increased neuropathogenesis, and high lethality in both adult and aged AG129 mice. The infected mice had endothelial dysfunction, elicited pro-inflammatory cytokine responses, and exhibited 100 % mortality. Further analysis revealed that aged-adapted DENV strains induced measurable alterations in TLR expression in the aged mice as compared to the adult mice. In addition, metabolomics analysis of the serum samples from the infected adult mice revealed dysregulation of 18 metabolites and upregulation of 6-keto-prostaglandin F1 alpha, phosphocreatine, and taurocholic acid. These metabolites may serve as key biomarkers to decipher and comprehend the severity of dengue-associated severe neuro-pathogenesis.


Subject(s)
Dengue Virus , Dengue , Humans , Animals , Mice , Aged , Dengue Virus/physiology , Cytokines/metabolism , Disease Models, Animal
2.
Cell Rep ; 42(11): 113275, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37874678

ABSTRACT

Type I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-), to comprehend the role of IFN-I response. We report that hACE2; Irgm1-/- mice are resistant to lethal SARS-CoV-2 infection. In contrast, a severe SARS-CoV-2 infection along with immune cell infiltration, cytokine storm, and enhanced pathology is observed in the lungs and brain of hACE2; Ifnar1-/- mice. The hACE2; Irgm1-/-Ifnar1-/- double-knockout mice display loss of the protective phenotype observed in hACE2; Irgm1-/- mice, suggesting that heightened IFN-I response accounts for the observed immunity. Taking the results together, we demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target against SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , Mice , Animals , Mice, Transgenic , SARS-CoV-2 , Mice, Knockout , Antibodies , Disease Models, Animal , Lung
3.
J Virol ; 97(7): e0018023, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338368

ABSTRACT

Although most of the early events of the hepatitis C virus (HCV) life cycle are well characterized, our understanding of HCV egress is still unclear. Some reports implicate the conventional endoplasmic reticulum (ER)-Golgi route, while some propose noncanonical secretory routes. Initially, the envelopment of HCV nucleocapsid occurs by budding into the ER lumen. Subsequently, the HCV particle exit from the ER is assumed to be mediated by coat protein complex II (COPII) vesicles. COPII vesicle biogenesis also involves the recruitment of cargo to the site of vesicle biogenesis via interaction with COPII inner coat proteins. We investigated the modulation and the specific role of the individual components of the early secretory pathway in HCV egress. We observed that HCV inhibits cellular protein secretion and triggers the reorganization of the ER exit sites and ER-Golgi intermediate compartments (ERGIC). Gene-specific knockdown of the components of this pathway such as SEC16A, TFG, ERGIC-53, and COPII coat proteins demonstrated the functional significance of these components and the distinct role played by these proteins in various aspects of the HCV life cycle. SEC16A is essential for multiple steps in the HCV life cycle, whereas TFG is specifically involved in HCV egress and ERGIC-53 is crucial for HCV entry. Overall, our study establishes that the components of the early secretory pathway are essential for HCV propagation and emphasize the importance of the ER-Golgi secretory route in this process. Surprisingly, these components are also required for the early stages of the HCV life cycle due to their role in overall intracellular trafficking and homeostasis of the cellular endomembrane system. IMPORTANCE The virus life cycle involves entry into the host, replication of the genome, assembly of infectious progeny, and their subsequent release. Different aspects of the HCV life cycle, including entry, genome replication, and assembly, are well characterized; however, our understanding of the HCV release is still not clear and subject to debate due to varied findings. Here, we attempted to address this controversy and enhance our understanding of HCV egress by evaluating the role of the different components of the early secretory pathway in the HCV life cycle. To our surprise, we found that the components of the early secretory pathway are not only essential for HCV release but also contribute to many other earlier events of the HCV life cycle. This study emphasizes the importance of the early secretory pathway for the establishment of productive HCV infection in hepatocytes.


Subject(s)
Endoplasmic Reticulum , Hepatitis C , Humans , Animals , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Secretory Pathway , Hepacivirus/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Protein Transport , Hepatitis C/metabolism , Life Cycle Stages , COP-Coated Vesicles/metabolism
4.
Eur J Pharmacol ; 938: 175392, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36400163

ABSTRACT

Oxidative stress by reactive oxygen species (ROS) has been hypothesized to be the major mediator of SARS-CoV-2-induced pathogenesis. During infection, the redox homeostasis of cells is altered as a consequence of virus-induced cellular stress and inflammation. In such scenario, high levels of ROS bring about the production of pro-inflammatory molecules like IL-6, IL-1ß, etc. that are believed to be the mediators of severe COVID-19 pathology. Based on the known antioxidant, anti-inflammatory, mucolytic and antiviral properties of NAC, it has been hypothesized that NAC will have beneficial effects in COVID-19 patients. In the current study efforts have been made to evaluate the protective effect of NAC in combination with remdesivir against SARS-CoV-2 induced lung damage in the hamster model. The SARS-CoV-2 infected animals were administered with high (500 mg/kg/day) and low (150 mg/kg/day) doses of NAC intraperitoneally with and without remdesivir. Lung viral load, pathology score and expression of inflammatory molecules were checked by using standard techniques. The findings of this study show that high doses of NAC alone can significantly suppress the SARS-CoV-2 mediated severe lung damage (2 fold), but on the contrary, it fails to restrict viral load. Moreover, high doses of NAC with and without remdesivir significantly suppressed the expression of pro-inflammatory genes including IL-6 (4.16 fold), IL-1ß (1.96 fold), and TNF-α (5.55 fold) in lung tissues. Together, results of this study may guide future preclinical and clinical attempts to evaluate the efficacy of different doses and routes of NAC administration with or without other drugs against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Interleukin-6 , Reactive Oxygen Species , Lung
5.
J Virol ; 96(20): e0082822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197108

ABSTRACT

Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.


Subject(s)
Dengue , PPAR gamma , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/pharmacology , Protein Kinases/metabolism , Cytokines/metabolism , Inflammation/pathology , Dengue/pathology
6.
Front Microbiol ; 13: 856913, 2022.
Article in English | MEDLINE | ID: mdl-35847066

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.

7.
Mol Omics ; 18(6): 490-505, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35506682

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections. Therefore, we hypothesized that microbial diversity changes, with increase in the population of opportunistic pathogens, during SARS-CoV2 infection in the nasopharynx, which may be involved in co-infection in COVID-19 patients. The 16S rRNA variable regions, V1-V9, of NP samples of control and COVID-19 (symptomatic and asymptomatic) patients were sequenced using the Oxford Nanopore™ technology. Comprehensive bioinformatics analysis for determining alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index were used to analyze the control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in the COVID-19 NP microbiome with an increase in the abundance of opportunistic pathogens at genus and species levels in asymptomatic/symptomatic patients. The significant abundance of Mycobacteria spp. and Mycoplasma spp. in symptomatic patients suggests their association and role in co-infections in COVID-19 patients. Furthermore, we found strong correlation of enrichment of Mycobacteria and Mycoplasma with the occurrences of chest pain and fever in symptomatic COVID-19 patients. This is the first study from India to show the abundance of Mycobacteria and Mycoplasma opportunistic pathogens in non-hospitalized COVID-19 patients and their relationship with symptoms, indicating the possibility of co-infections.


Subject(s)
COVID-19 , Coinfection , Mycobacterium , Mycoplasma , Coinfection/epidemiology , Dysbiosis , Humans , Nasopharynx , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2
8.
Microbiol Spectr ; 10(3): e0083022, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35604158

ABSTRACT

The nonstructural protein 4A (NS4A) of flaviviruses has been implicated as a "central organizer" of the membrane-bound replication complex during virus replication. However, its role in the host responses to virus infection is not understood. Using the yeast-two-hybrid library screen, we identified a multitude of host proteins interacting with the Japanese encephalitis virus (JEV) NS4A protein. Several of these interacting proteins are known to localize to the mitochondria. One of these proteins was PTEN-induced kinase 1 (PINK1), a serine/threonine-protein kinase known for its role in mitophagy. Here, we demonstrate the JEV-NS4A localization to the mitochondria and its interaction with PINK1 in Huh7 cells during JEV infection. The JEV-infected cells showed an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We present data showing that JEV-NS4A alone was sufficient to induce mitophagy. Interference with mitochondrial fragmentation and mitophagy resulted in reduced virus propagation. Overall, our study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein. IMPORTANCE The JEV-infected mammalian cells show an enhanced mitophagy flux with a concomitant decline in the mitochondrial mass. We show that the NS4A protein of JEV localized to the mitochondria and interacted with PINK1 in Huh7 cells during infection with the virus and demonstrate that JEV-NS4A alone is sufficient to induce mitophagy. The study provides the first evidence of mitochondrial quality control dysregulation during JEV infection, largely mediated by its NS4A protein.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/metabolism , Mammals/metabolism , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism , Viral Nonstructural Proteins/metabolism
9.
Front Cell Infect Microbiol ; 12: 821061, 2022.
Article in English | MEDLINE | ID: mdl-35573775

ABSTRACT

The Dengue virus (DENV) and Chikungunya virus (CHIKV) are the arboviruses that pose a threat to global public health. Coinfection and antibody-dependent enhancement are major areas of concern during DENV and CHIKV infections, which can alter the clinical severity. Acute hepatic illness is a common manifestation and major sign of disease severity upon infection with either dengue or chikungunya. Hence, in this study, we characterized the coexistence and interaction between both the viruses in human hepatic (Huh7) cells during the coinfection/superinfection scenario. We observed that prior presence of or subsequent superinfection with DENV enhanced CHIKV replication. However, prior CHIKV infection negatively affected DENV. In comparison to monoinfection, coinfection with both DENV and CHIKV resulted in lower infectivity as compared to monoinfections with modest suppression of CHIKV but dramatic suppression of DENV replication. Subsequent investigations revealed that subneutralizing levels of DENV or CHIKV anti-sera can respectively promote the ADE of CHIKV or DENV infection in FcγRII bearing human myelogenous leukemia cell line K562. Our observations suggest that CHIKV has a fitness advantage over DENV in hepatic cells and prior DENV infection may enhance CHIKV disease severity if the patient subsequently contracts CHIKV. This study highlights the natural possibility of dengue-chikungunya coinfection and their subsequent modulation in human hepatic cells. These observations have important implications in regions where both viruses are prevalent and calls for proper management of DENV-CHIKV coinfected patients.


Subject(s)
Chikungunya Fever , Chikungunya virus , Coinfection , Dengue Virus , Dengue , Superinfection , Cell Line , Chikungunya Fever/complications , Dengue/complications , Humans
10.
Membranes (Basel) ; 12(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35323802

ABSTRACT

Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.

11.
Front Microbiol ; 12: 673509, 2021.
Article in English | MEDLINE | ID: mdl-34248884

ABSTRACT

Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.

12.
FASEB J ; 35(7): e21713, 2021 07.
Article in English | MEDLINE | ID: mdl-34105201

ABSTRACT

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS-CoV-2 infection similar to that reported earlier in COVID-19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID-19 was only occasionally noticed. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters on day 4 and day 14 post-infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis and progression of the disease.


Subject(s)
COVID-19/metabolism , COVID-19/pathology , Host-Pathogen Interactions , Lung/metabolism , Lung/virology , Proteomics , SARS-CoV-2/pathogenicity , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Female , Lung/pathology , Male , Proteome/analysis , Proteome/biosynthesis , Reproducibility of Results , Viral Load
13.
Comput Struct Biotechnol J ; 19: 1998-2017, 2021.
Article in English | MEDLINE | ID: mdl-33841751

ABSTRACT

The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.

14.
Ann Saudi Med ; 41(2): 86-90, 2021.
Article in English | MEDLINE | ID: mdl-33818150

ABSTRACT

BACKGROUND: Thyrotoxicosis is a common medical problem. Thyroid nuclear imaging with either I123 or technetium-99m (Tc-99m) pertechnetate are used to determine the cause. Although I123 has been the standard technique, Tc-99m pertechnetate is now commonly used, acceptable and easier to perform. The commonly used normal value of Tc-99m pertechnetate is 1-4%, but lower normal values have been reported in different populations. OBJECTIVE: Determine normal reference range of Tc-99m pertechne-tate thyroid uptake for thyroid scintigraphy in Saudi Arabia. DESIGN: Retrospective, cross-sectional. SETTING: Nuclear medicine service at tertiary care center in Riyadh. PATIENTS AND METHODS: We used data from biochemically euthyroid patients who underwent a thyroid Tc-99m pertechnetate scan while having parathyroid scintigraphy for hyperparathyroidism between April 2009 to April 2019. Medical records and biochemical thyroid function tests were reviewed and Tc-99m pertechnetate thyroid uptake values were determined for each patient. MAIN OUTCOME MEASURES: Thyroid uptake of Tc-99m pertechne-tate in euthyroid patients. SAMPLE SIZE: 167 RESULTS: The mean and median uptake of Tc-99m pertechnetate in euthyroid patients were 0.86% and 1.0%, respectively, and the inter-quartile range was 0.0-1.0%. The normal reference range in the study population was 0.2-2%. Thyroid uptake inversely correlated with age in females (r=-0.37, P<.001), males (r=-0.46, P=.001), and for all patients (r=?0.39, P<.0001). CONCLUSION: The range for normal thyroid Tc-99m pertechnetate was lower than the standard 1-4% range. Moreover, uptake decreased with age. Further studies are needed to establish the normal age-adjusted uptake for the thyroid Tc-99m pertechnetate scan. LIMITATIONS: Single center and retrospective. CONFLICT OF INTEREST: None.


Subject(s)
Sodium Pertechnetate Tc 99m , Technetium , Cross-Sectional Studies , Female , Humans , Male , Radiopharmaceuticals , Reference Values , Retrospective Studies , Saudi Arabia , Thyroid Gland/diagnostic imaging
15.
Mitochondrion ; 58: 227-242, 2021 05.
Article in English | MEDLINE | ID: mdl-33775873

ABSTRACT

Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum/metabolism , Homeostasis , Mitochondria/metabolism , Viruses/metabolism , Humans
16.
Front Cell Infect Microbiol ; 11: 725035, 2021.
Article in English | MEDLINE | ID: mdl-34993157

ABSTRACT

Purpose: The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively. In addition, whole-genome sequencing of viral strains and mutational analysis were carried out. Results: Analysis of the biochemical parameters highlighted the increased levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT, and ferritin in symptomatic patients. Symptomatic patients were mostly with one or more comorbidities, especially type 2 diabetes (66.6%). The virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. On the other hand, viral load was higher in plasma and serum samples of symptomatic patients, and they develop sufficient amounts of antibodies (IgG, IgM, and IgA). The levels of seven cytokines (IL-6, IL-1α, IP-10, IL-8, IL-10, IFN-α2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO, and MDC) were remarkably higher in asymptomatic patients. The whole-genome sequence analysis revealed that the current isolates were clustered with 19B, 20A, and 20B clades; however, 11 additional changes in Orf1ab, spike, Orf3a, Orf8, and nucleocapsid proteins were acquired. The D614G mutation in spike protein is linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load, and among them, two patients with this mutation passed away. Conclusions: This is the first comprehensive study of SARS-CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and thereby advance the implementation of effective disease control strategies.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Genomics , Humans , Pandemics , SARS-CoV-2
17.
ACS Appl Bio Mater ; 4(5): 4373-4383, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006849

ABSTRACT

The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC-water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m-2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m-2 h-1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.


Subject(s)
Acetobacteraceae/chemistry , Biocompatible Materials/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Sunlight , Titanium/chemistry , Hydrophobic and Hydrophilic Interactions , Materials Testing , Particle Size , Water Purification
18.
Front Microbiol ; 11: 594928, 2020.
Article in English | MEDLINE | ID: mdl-33329480

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has emerged as a global pandemic worldwide. In this study, we used ARTIC primers-based amplicon sequencing to profile 225 SARS-CoV-2 genomes from India. Phylogenetic analysis of 202 high-quality assemblies identified the presence of all the five reported clades 19A, 19B, 20A, 20B, and 20C in the population. The analyses revealed Europe and Southeast Asia as two major routes for introduction of the disease in India followed by local transmission. Interestingly, the19B clade was found to be more prevalent in our sequenced genomes (17%) compared to other genomes reported so far from India. Haplotype network analysis showed evolution of 19A and 19B clades in parallel from predominantly Gujarat state in India, suggesting it to be one of the major routes of disease transmission in India during the months of March and April, whereas 20B and 20C appeared to evolve from 20A. At the same time, 20A and 20B clades depicted prevalence of four common mutations 241 C > T in 5' UTR, P4715L, F942F along with D614G in the Spike protein. D614G mutation has been reported to increase virus shedding and infectivity. Our molecular modeling and docking analysis identified that D614G mutation resulted in enhanced affinity of Spike S1-S2 hinge region with TMPRSS2 protease, possibly the reason for increased shedding of S1 domain in G614 as compared to D614. Moreover, we also observed an increased concordance of G614 mutation with the viral load, as evident from decreased Ct value of Spike and the ORF1ab gene.

19.
EMBO J ; 37(18)2018 09 14.
Article in English | MEDLINE | ID: mdl-30143514

ABSTRACT

Sequestration of protein aggregates in inclusion bodies and their subsequent degradation prevents proteostasis imbalance, cytotoxicity, and proteinopathies. The underlying molecular mechanisms controlling the turnover of protein aggregates are mostly uncharacterized. Herein, we show that a TRIM family protein, TRIM16, governs the process of stress-induced biogenesis and degradation of protein aggregates. TRIM16 facilitates protein aggregate formation by positively regulating the p62-NRF2 axis. We show that TRIM16 is an integral part of the p62-KEAP1-NRF2 complex and utilizes multiple mechanisms for stabilizing NRF2. Under oxidative and proteotoxic stress conditions, TRIM16 activates ubiquitin pathway genes and p62 via NRF2, leading to ubiquitination of misfolded proteins and formation of protein aggregates. We further show that TRIM16 acts as a scaffold protein and, by interacting with p62, ULK1, ATG16L1, and LC3B, facilitates autophagic degradation of protein aggregates. Thus, TRIM16 streamlines the process of stress-induced aggregate clearance and protects cells against oxidative/proteotoxic stress-induced toxicity in vitro and in vivo Taken together, this work identifies a new mechanism of protein aggregate turnover, which could be relevant in protein aggregation-associated diseases such as neurodegeneration.


Subject(s)
DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , NF-E2-Related Factor 2/metabolism , Protein Aggregates , Proteolysis , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , DNA-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Multiprotein Complexes/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination/genetics
20.
Mitochondrion ; 41: 21-27, 2018 07.
Article in English | MEDLINE | ID: mdl-29246869

ABSTRACT

Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion/immunology , Immunity, Innate/immunology , Mitochondria/immunology , Mitochondrial Dynamics , Viruses/immunology , Animals , Antiviral Agents/pharmacology , Humans , Immune Evasion/drug effects , Mitochondria/pathology , Mitochondria/virology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...