Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 20(12): e202300466, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864549

ABSTRACT

A novel series of oxazole incorporated naphthyridine (21 a-j) derivatives were designed and, synthesized followed by screening of their anticancer activity profiles against human breast cancer (MCF-7), human lung cancer (A549) and human prostate (PC3 & DU-145) cancer cell lines by employing MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay using etoposide as the positive control. Of these compounds, N-(6-chloro-3-(4-(3,4,5-trimethoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine with 3,4,5-trimethoxy substituent on the aryl moiety attached to oxazole ring showed potent anticancer activity against PC3, A549, MCF-7, and DU-145 cell lines with IC50 values of 0.13±0.095 µM; 0.10±0.084 µM; 0.18±0.087 µM and 0.15±0.076 µM respectively. Apart from this, compounds N-(6-chloro-3-(4-(3,5-dimethoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine, N-(6-chloro-3-(4-(4-methoxyphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine, and N-(6-chloro-3-(4-(3,5-dimethylphenyl)oxazol-2-yl)-1,5-naphthyridin-4-yl)oxazol-2-amine also showed better anticancer activities against four cancer cell lines screened for. These activities were also validated through the molecular docking simulations, which further indicated demonstration of better interaction energy and profile by these compounds.


Subject(s)
Antineoplastic Agents , Neoplasms , Male , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Neoplasms/drug therapy , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , Amines/pharmacology , Drug Screening Assays, Antitumor , Cell Line, Tumor , Cell Proliferation
2.
Nat Prod Res ; 37(20): 3402-3408, 2023.
Article in English | MEDLINE | ID: mdl-35666807

ABSTRACT

The total synthesis of the 16-membered Polyhydroxylated macrolide, Aspergillide D has been accomplished utilizing the Grignard reaction, Sharpless asymmetric epoxidation Regioselective ring opening of epoxy alcohol, Wittig olefination and Yamaguchi macrolactonisation as key steps. 3-butene-1-ol has been utilized as the starting material.

3.
Biomed Res Int ; 2021: 5125681, 2021.
Article in English | MEDLINE | ID: mdl-34631882

ABSTRACT

Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Green Chemistry Technology , Luffa/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Silver/pharmacology , Bacteria/drug effects , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Cell Death/drug effects , Cell Line, Tumor , Color , Humans , Ligands , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Molecular Docking Simulation , Picrates/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Quantitative Structure-Activity Relationship , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Sulfonic Acids/chemistry , Toxicity Tests , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...