Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 38(15): 4471-4482, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31625460

ABSTRACT

The human HMGB1 gene mutations have a major impact on several immune-related diseases and cancer. The detrimental effect of non-synonymous mutations of HMGB1 has not been investigated yet, hence the present study aims to examine single nucleotide polymorphisms and their implications on the structure-function of human HMGB1. The multifaceted HMGB1 protein acts as pleiotropic cytokine and regulates essential genes for coordinated cellular functions. The mutational effect on HMGB1 was analyzed by sequence-based homology methods, supervised learning methods, and structure-based methods. The study identified 58 non-synonymous mutations in human HMGB1, out of which only 2 mutations; R10T (rs61742222) and F103C (rs61733675) were classified as the SNPs with highest deleterious and disease-causing mutants. The effect of these mutations in structure of HMGB1 was scrutinized and the R10T mutant found to have a distinct structural behaviour in the B-box domain. In addition, R10T mutant predicted that it affects the MoRF function of HMGB1 and it could disrupt the DNA binding or/and protein partner interaction activity by HMGB1. F103C mutation takes place at the TLR binding and cytokine inducing region of HMGB1, hence it could affect the protein binding activity which involves in many cellular signaling. The study identified potent mutations R10T (a cancer-causing somatic mutation) and F103C (a novel mutation) and these mutations either directly or indirectly hinder DNA binding activity and TLR and cytokine binding of HMGB1. These findings will help in understanding the molecular basis of these promising mutations and functional role of human HMGB1 in cancer and immunological diseases.AbbreviationsAGERAdvanced glycosylation end product-specific receptorCXCLChemokine (C-X-C motif) liganddbSNPThe single nucleotide polymorphism databaseHMGB1High mobility group box 1LINCSLINear Constraint SolverMDSMolecular dynamics simulationMoRFMolecular recognition featuresNPTNumber of particle, Pressure and TemperatureNVTNumber of particle, Volume and TemperaturensSNPNon-synonymous SNPPBCPartial boundary conditionPCAPrincipal component analysisPMEPartial mesh EwaldRMSDRoot mean square deviationRMSFRoot mean square fluctuationSNPSingle nucleotide polymorphismSPCSingle-point chargeTLRToll-like receptorUTRUn-translated RegionCommunicated by Ramaswamy H. Sarma.


Subject(s)
HMGB1 Protein , Computer Simulation , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Polymorphism, Single Nucleotide , Protein Binding , Virulence
2.
J Biomol Struct Dyn ; 36(1): 209-220, 2018 01.
Article in English | MEDLINE | ID: mdl-27960631

ABSTRACT

Secreted venom Phospholipase A2 is highly responsible for pharmacological effects like neurotoxicity, myotoxicity, hemolytic, anti-coagulation, and platelet aggregation. Neutralization of these pharmacological behaviors is one of the challenges existing for many decades and a potent drug compound for this is very much needed to control local effects of venom sPLA2. In this study, we investigated binding mechanism and kinetics of inhibition of Piperine (major constitute of Piper nigrum) with sPLA2 using DFT, MD simulation, MM-PBSA, and SPR method. Frontier MO properties were suggested that it procured better chemical reactivity and druglikeness and binding mode of Piperine with EcPLA2 defined that it occupied well in N-terminal hydrophobic cleft. The persistence of Piperine interactions with and without calcium ion was analyzed and confirmed by MD simulation analysis. The dPCA-based FEL shows the nature of apo- and Piperine-bound conformational behavior of EcPLA2 including intermediate forms. Further, binding energy of Piperine was calculated by high-throughput MM-PBSA which states that calcium ion presence enhances the Piperine binding by additional electrostatic interactions. Finally, kinetics of inhibition between Piperine and EcPLA2 implied that it secured better binding affinity (KD: as 1.708 pM) and the result gives clear evidence for the binding mechanism and binding energy calculated. In conclusion, Piperine was authenticated with better drug ability, entrenched binding interaction, and robust kinetics of inhibition with EcPLA2 through which it can become an exceeding drug candidate for pharmacological as well as catalytic activity of sPLA2.


Subject(s)
Alkaloids/chemistry , Benzodioxoles/chemistry , Molecular Dynamics Simulation , Phospholipases A2, Secretory/chemistry , Piperidines/chemistry , Polyunsaturated Alkamides/chemistry , Snake Venoms/enzymology , Alkaloids/metabolism , Alkaloids/pharmacology , Animals , Benzodioxoles/metabolism , Benzodioxoles/pharmacology , Binding Sites , Kinetics , Molecular Structure , Phospholipases A2, Secretory/antagonists & inhibitors , Phospholipases A2, Secretory/metabolism , Piperidines/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/pharmacology , Protein Binding , Protein Conformation , Surface Plasmon Resonance
3.
Mol Biosyst ; 12(4): 1128-38, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26867694

ABSTRACT

Hyaluronidases (Hyals) are a class of carbohydrate-active enzyme involved in angiogenesis, cancer proliferation, tumour growth and venom spreading. Functionally significant Hyals are responsible for the fast spreading of venom to the target site of action. The absence of molecular diversity and the structural and functional behaviour of snake venom Hyals was the inspiration for the objective of this study. Echis pyramidum leakeyi hyaluronidase (EHY)-based phylogenetic analysis showed the existence of two functional groups of Hyals which had diverged from the coral snake (the ancestor). The structure was modelled and it was found that the E-loop region (211-224 AA) was only present in EHY compared to the templates which may account for the significant function of viper Hyal. The best interacting ligands were screened from the selected plant derivatives and MYR consisted of better pharmacophore features (AADDRRR) in comparison with other ligands. Furthermore, the HOMO, LUMO, and MO energies and energy gaps of CGA, MIM and MYR were calculated by DFT analysis. EHY-ligand complex stability and interactions were investigated through MD simulation and FEL analysis. These revealed that MIM and MYR or their derivative compounds could be prominent lead molecules for both EHY and other eukaryotic Hyals. PCA analysis of both the non-ligated and ligated forms confirmed that loop-III (86-96 AA) and E-loop region structural rearrangements were essential for the association and dissociation process of the substrate. Particularly, ARG92 and LYS219 are determined as important key residues from the conformational changes. These regions' dynamic behaviour can be associated with HA binding and the catalytic function of EHY. This result can extend our knowledge of viper Hyal functional behaviour and provides structural insight to target eukaryotic Hyals as forthcoming drug targets in cancer treatment and venom spreading.


Subject(s)
Genetic Variation , Hyaluronoglucosaminidase/chemistry , Hyaluronoglucosaminidase/genetics , Ligands , Models, Molecular , Protein Conformation , Viperidae , Animals , Molecular Docking Simulation , Molecular Dynamics Simulation , Phylogeny , Protein Binding
4.
J Mol Biol ; 348(5): 1191-8, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15854654

ABSTRACT

The large variety of serine protease inhibitors, available from various sources such as tissues, microorganisms, plants, etc., play an important role in regulating the proteolytic enzymes. The analysis of protease-inhibitor complexes helps in understanding the mechanism of action, as well as in designing inhibitors. Vasopressin, an anti-diuretic nonapeptide hormone, is found to be an effective inhibitor of trypsin, with a K(i) value of 5 nM. The crystal structure of the trypsin-vasopressin complex revealed that vasopressin fulfils all the important interactions for an inhibitor, without any break in the scissile peptide bond. The cyclic nature due to a disulfide bridge between Cys1 and Cys6 of vasopressin provides structural rigidity to the peptide hormone. The trypsin-binding site is located at the C terminus, while the neurophysin-binding site is at the N terminus of vasopressin. This study will assist in designing new peptide inhibitors. This study suggests that vasopressin inhibition of trypsin may have unexplored biological implications.


Subject(s)
Trypsin Inhibitors/chemistry , Trypsin/chemistry , Vasopressins/chemistry , Binding Sites , Crystallography , Humans , Molecular Structure , Trypsin/drug effects , Trypsin Inhibitors/pharmacology , Vasopressins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...