Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Physiol ; 11: 155, 2020.
Article in English | MEDLINE | ID: mdl-32174842

ABSTRACT

Accumulating epidemiological evidence supports that chronic exposure to ambient fine particular matters of <2.5 µm (PM2.5) predisposes both children and adults to Alzheimer's disease (AD) and age-related brain damage leading to dementia. There is also experimental evidence to show that PM2.5 exposure results in early onset of AD-related pathologies in transgenic AD mice and development of AD-related and age-related brain pathologies in healthy rodents. Studies have also documented that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition to elevated levels of amyloid ß (Aß) and tau phosphorylation. Oxidative stress and the oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple molecular and cellular alterations that underpin AD-related cognitive dysfunction. Documented evidence suggests critical engagement of oxidative stress and TRPM2 channel activation in various PM2.5-induced cellular effects. Here we discuss recent studies that favor causative relationships of PM2.5 exposure to increased AD prevalence and AD- and age-related pathologies, and raise the perspective on the roles of oxidative stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and age-related brain damage.

2.
Front Pharmacol ; 10: 239, 2019.
Article in English | MEDLINE | ID: mdl-30914955

ABSTRACT

Microglial cells in the central nervous system (CNS) are crucial in maintaining a healthy environment for neurons to function properly. However, aberrant microglial cell activation can lead to excessive generation of neurotoxic proinflammatory mediators and neuroinflammation, which represents a contributing factor in a wide spectrum of CNS pathologies, including ischemic stroke, traumatic brain damage, Alzheimer's disease, Parkinson's disease, multiple sclerosis, psychiatric disorders, autism spectrum disorders, and chronic neuropathic pain. Oxidative stress is a salient and common feature of these conditions and has been strongly implicated in microglial cell activation and neuroinflammation. The transient receptor potential melastatin-related 2 (TRPM2) channel, an oxidative stress-sensitive calcium-permeable cationic channel, is highly expressed in microglial cells. In this review, we examine the recent studies that provide evidence to support an important role for the TRPM2 channel, particularly TRPM2-mediated Ca2+ signaling, in mediating microglial cell activation, generation of proinflammatory mediators and neuroinflammation, which are of relevance to CNS pathologies. These findings lead to a growing interest in the TRPM2 channel, a new player in neuroinflammation, as a novel therapeutic target for CNS diseases.

3.
Ageing Res Rev ; 47: 67-79, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30009973

ABSTRACT

Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid ß peptide (Aß) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aß generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aß and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.


Subject(s)
Aging/metabolism , Aging/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Oxidative Stress/physiology , TRPM Cation Channels/biosynthesis , Aging/genetics , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Dementia/genetics , Dementia/metabolism , Dementia/pathology , Humans , TRPM Cation Channels/genetics
4.
Neurosci Biobehav Rev ; 87: 192-205, 2018 04.
Article in English | MEDLINE | ID: mdl-29453990

ABSTRACT

Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.


Subject(s)
Adenosine Triphosphate/physiology , Antidepressive Agents/therapeutic use , Mood Disorders , Receptors, Purinergic P2X7/physiology , Animals , Drug Development , Encephalitis/complications , Humans , Immunity, Innate , Mood Disorders/complications , Mood Disorders/drug therapy , Mood Disorders/immunology , Mood Disorders/physiopathology , Purinergic P2X Receptor Antagonists/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...