Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(6): e2201842, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574469

ABSTRACT

Recent advances in atomically thin two dimensional (2D) anisotropic group IVA -VI metal monochalcogenides (MMCs) and their fascinating intrinsic properties and potential applications are hampered due to an ongoing challenge of monolayer isolation. Among the most promising MMCs, tin (II) sulfide (SnS) is an earth-abundant layered material with tunable bandgap and anisotropic physical properties, which render it extraordinary for electronics and optoelectronics. To date, however, the successful isolation of atomically thin SnS single layers at large quantities has been challenging due to the presence of strong interlayer interactions, attributed to the lone-pair electrons of sulfur. Here, a novel liquid phase exfoliation approach is reported, which enables the overcome of such strong interlayer binding energy. Specifically, it demonstrates that the synergistic action of external thermal energy with the ultrasound energy-induced hydrodynamic force in solution gives rise to the systematic isolation of highly crystalline SnS monolayers (1L-SnS). It is shown that the exfoliated 1L-SnS crystals exhibit high carrier mobility and deep-UV spectral photodetection, featuring a fast carrier response time of 400 ms. At the same time, monolayer-based SnS transistor devices fabricated from solution present a high on/off ratio, complemented with a responsivity of 6.7 × 10-3 A W-1 and remarkable stability upon prolonged operation in ambient conditions. This study opens a new avenue for large-scale isolation of highly crystalline SnS and other MMC manolayers for a wide range of applications, including extended area nanoelectronic devices, printed from solution.

2.
J Hazard Mater ; 406: 124679, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33316665

ABSTRACT

In this study, natural zeolite with maximum adsorption capacity of 3.59 mg g-1 was used for the simultaneous removal of ammonium nitrogen (NH4+-N), dissolved chemical oxygen demand (d-COD) and color from raw sanitary landfill leachate (SLL). Saturation, desorption and regeneration tests of zeolite were performed. Optimum adsorption conditions were found for particle size 0.930 µm, stirring rate of 1.18 m s-1, zeolite dosage of 133 g L-1 and pH 8. NH4+-N removal efficiency reached 51.63 ± 0.80% within 2.5 min of contact. NH4+-N adsorption follows mostly the linear pseudo-second order model, with intra-particle diffusion. NH4+-N desorption follows the linear pseudo-second order model. Adsorption data fitted to the Temkin Isotherm in linear and nonlinear forms. Saturation tests showed that zeolite can be efficiently used in three successive adsorption cycles. NH4+-N release from the saturated zeolite was not completely reversible, suggesting that the zeolite may be used as slow ΝΗ4+-Ν releasing fertilizer and an attractive low cost material for the treatment of SLL. NH4+-N removal with the regenerated zeolite exceeded 40% of the initial concentration in the fluid within 2.5 min. SEM analysis showed significant changes through saturation and regeneration. XPS revealed that adsorption of ΝΗ4+-Ν to the zeolite was accompanied by ion exchange.

SELECTION OF CITATIONS
SEARCH DETAIL
...