Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458907

ABSTRACT

Non-Intrusive Load Monitoring (NILM) describes the process of inferring the consumption pattern of appliances by only having access to the aggregated household signal. Sequence-to-sequence deep learning models have been firmly established as state-of-the-art approaches for NILM, in an attempt to identify the pattern of the appliance power consumption signal into the aggregated power signal. Exceeding the limitations of recurrent models that have been widely used in sequential modeling, this paper proposes a transformer-based architecture for NILM. Our approach, called ELECTRIcity, utilizes transformer layers to accurately estimate the power signal of domestic appliances by relying entirely on attention mechanisms to extract global dependencies between the aggregate and the domestic appliance signals. Another additive value of the proposed model is that ELECTRIcity works with minimal dataset pre-processing and without requiring data balancing. Furthermore, ELECTRIcity introduces an efficient training routine compared to other traditional transformer-based architectures. According to this routine, ELECTRIcity splits model training into unsupervised pre-training and downstream task fine-tuning, which yields performance increases in both predictive accuracy and training time decrease. Experimental results indicate ELECTRIcity's superiority compared to several state-of-the-art methods.


Subject(s)
Electric Power Supplies , Electricity
2.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35144242

ABSTRACT

Over the past few years, positron emission tomography/computed tomography (PET/CT) imaging for computer-aided diagnosis has received increasing attention. Supervised deep learning architectures are usually employed for the detection of abnormalities, with anatomical localization, especially in the case of CT scans. However, the main limitations of the supervised learning paradigm include (i) large amounts of data required for model training, and (ii) the assumption of fixed network weights upon training completion, implying that the performance of the model cannot be further improved after training. In order to overcome these limitations, we apply a few-shot learning (FSL) scheme. Contrary to traditional deep learning practices, in FSL the model is provided with less data during training. The model then utilizes end-user feedback after training to constantly improve its performance. We integrate FSL in a U-Net architecture for lung cancer lesion segmentation on PET/CT scans, allowing for dynamic model weight fine-tuning and resulting in an online supervised learning scheme. Constant online readjustments of the model weights according to the users' feedback, increase the detection and classification accuracy, especially in cases where low detection performance is encountered. Our proposed method is validated on the Lung-PET-CT-DX TCIA database. PET/CT scans from 87 patients were included in the dataset and were acquired 60 minutes after intravenous18F-FDG injection. Experimental results indicate the superiority of our approach compared to other state-of-the-art methods.


Subject(s)
Deep Learning , Lung Neoplasms , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...