Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 92(4): 405-414, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28195393

ABSTRACT

BACKGROUND: Many families with a high burden of colorectal cancer fulfil the clinical criteria for Lynch Syndrome. However, in about half of these families, no germline mutation in the mismatch repair genes known to be associated with this disease can be identified. The aim of this study was to find the genetic cause for the increased colorectal cancer risk in these unsolved cases. MATERIALS AND METHODS: To reach the aim, we designed a gene panel targeting 112 previously known or candidate colorectal cancer susceptibility genes to screen 274 patient samples for mutations. Mutations were validated by Sanger sequencing and, where possible, segregation analysis was performed. RESULTS: We identified 73 interesting variants, of whom 17 were pathogenic and 19 were variants of unknown clinical significance in well-established cancer susceptibility genes. In addition, 37 potentially pathogenic variants in candidate colorectal cancer susceptibility genes were detected. CONCLUSION: In conclusion, we found a promising DNA variant in more than 25 % of the patients, which shows that gene panel testing is a more effective method to identify germline variants in CRC patients compared to a single gene approach.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Genetic Predisposition to Disease , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Female , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged
2.
Fam Cancer ; 14(3): 437-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25860647

ABSTRACT

In some families there is an increased risk for colorectal cancer, caused by heritable, but often unidentified genetic mutations predisposing to the disease. We have identified the likely genetic cause for disease predisposition in a large family with high burden of colorectal adenomas and carcinomas, in addition to extra-colonic cancers. This family had previously been tested for known cancer susceptibility genes, with negative results. Exome sequencing was used to identify a novel mutation, c.1373A>T (p.Tyr458Phe), in the gene for DNA polymerase epsilon catalytic subunit (POLE). This mutation is located in the active site of the exonuclease domain of the enzyme, and affects a residue that has previously been shown to be important for exonuclease activity. The first predisposing mutation identified in POLE (c.1270C>G, p.Leu424Val) was associated with colorectal cancer only, but another mutation with a broader tumour spectrum (c.1089C>A, p.Asn363Lys) has recently been reported. In the family described in the present study, carriers generally have multiple colorectal adenomas and cancer of colon, pancreas, ovaries and small intestine which represents an important broadening of the tumour spectrum of POLE mutation carriers. We also observe a large phenotypic variation among the POLE mutation carriers in this family, most likely explained by modifying variants in other genes. One POLE mutation carrier has a novel variant in EXO1 (c.458C>T, p.Ala153Val), which may contribute to a more severe phenotype. The findings in this study will have important implications for risk assessment and surveillance of POLE mutation carriers.


Subject(s)
Colorectal Neoplasms/genetics , DNA Polymerase II/genetics , Mutation , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/genetics , Amino Acid Sequence , DNA Polymerase II/metabolism , Exome , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Intestine, Small/pathology , Male , Molecular Sequence Data , Pedigree , Poly-ADP-Ribose Binding Proteins , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...