Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-486253

ABSTRACT

Inflammation is a complex physiological process triggered in response to harmful stimuli. It involves specialized cells of the immune system able to clear sources of cell injury and damaged tissues to promote repair. Excessive inflammation can occur as a result of infections and is a hallmark of several diseases. The molecular basis underlying inflammatory responses are not fully understood. Here, we show that the cell surface marker CD44, which characterizes activated immune cells, acts as a metal transporter that promotes copper uptake. We identified a chemically reactive pool of copper(II) in mitochondria of inflammatory macrophages that catalyzes NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with a rationally-designed dimer of metformin triggers distinct metabolic and epigenetic states that oppose macrophage activation. This drug reduces inflammation in mouse models of bacterial and viral (SARS-CoV-2) infections, improves well-being and increases survival. Identifying mechanisms that regulate the plasticity of immune cells provides the means to develop next-generation medicine. Our work illuminates the central role of copper as a regulator of cell plasticity and unveils a new therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21250357

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and non-cancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer, 89% COVID-19+), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Chronic viral RNA carriers exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of non-conventional monocytes and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T helper cells, and non-naive Granzyme B+ FasL+, EomehighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.

SELECTION OF CITATIONS
SEARCH DETAIL
...