Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 38(4): 681-93, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23562159

ABSTRACT

How innate lymphoid cells (ILCs) in the thymus and gut become specialized effectors is unclear. The prototypic innate-like γδ T cells (Tγδ17) are a major source of interleukin-17 (IL-17). We demonstrate that Tγδ17 cells are programmed by a gene regulatory network consisting of a quartet of high-mobility group (HMG) box transcription factors, SOX4, SOX13, TCF1, and LEF1, and not by conventional TCR signaling. SOX4 and SOX13 directly regulated the two requisite Tγδ17 cell-specific genes, Rorc and Blk, whereas TCF1 and LEF1 countered the SOX proteins and induced genes of alternate effector subsets. The T cell lineage specification factor TCF1 was also indispensable for the generation of IL-22 producing gut NKp46(+) ILCs and restrained cytokine production by lymphoid tissue inducer-like effectors. These results indicate that similar gene network architecture programs innate sources of IL-17, independent of anatomical origins.


Subject(s)
High Mobility Group Proteins/metabolism , Interleukin-17/biosynthesis , Intestines/immunology , Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Antigens, Ly/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Cell Differentiation/genetics , Cells, Cultured , Gene Regulatory Networks/immunology , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , High Mobility Group Proteins/genetics , Immunity, Innate/genetics , Interleukin-17/genetics , Interleukins/immunology , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Natural Cytotoxicity Triggering Receptor 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Signal Transduction/immunology , Transcriptional Activation/immunology , Interleukin-22
2.
J Immunol ; 190(6): 2659-69, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23378428

ABSTRACT

The Tec family tyrosine kinase, Itk, regulates signaling downstream of the TCR. The absence of Itk in CD4(+) T cells results in impaired Th2 responses along with defects in maturation, cytokine production, and survival of iNKT cells. Paradoxically, Itk(-/-) mice have spontaneously elevated serum IgE levels, resulting from an expansion of the Vγ1.1(+)Vδ6.3(+) subset of γδ T cells, known as γδ NKT cells. Comparisons between γδ NKT cells and αß iNKT cells showed convergence in the pattern of cell surface marker expression, cytokine profiles, and gene expression, suggesting that these two subsets of NKT cells undergo similar differentiation programs. Hepatic γδ NKT cells have an invariant TCR and are derived predominantly from fetal progenitors that expand in the thymus during the first weeks of life. The adult thymus contains these invariant γδ NKT cells plus a heterogeneous population of Vγ1.1(+)Vδ6.3(+) T cells with diverse CDR3 sequences. This latter population, normally excluded from the liver, escapes the thymus and homes to the liver when Itk is absent. In addition, Itk(-/-) γδ NKT cells persistently express high levels of Zbtb16 (PLZF) and Il4, genes that are normally downregulated in the most mature subsets of NKT cells. These data indicate that Itk signaling is required to prevent the expansion of γδ NKT cells in the adult thymus, to block their emigration, and to promote terminal NKT cell maturation.


Subject(s)
Cell Differentiation/immunology , Cellular Senescence/immunology , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Protein-Tyrosine Kinases/physiology , Receptors, Antigen, T-Cell, gamma-delta/biosynthesis , Thymus Gland/enzymology , Thymus Gland/immunology , Animals , Cell Migration Inhibition/immunology , Cell Movement/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/cytology , Thymus Gland/cytology
3.
Nat Immunol ; 13(5): 511-8, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22473038

ABSTRACT

Innate γδ T cells function in the early phase of immune responses. Although innate γδ T cells have often been studied as one homogenous population, they can be functionally classified into effector subsets on the basis of the production of signature cytokines, analogous to adaptive helper T cell subsets. However, unlike the function of adaptive T cells, γδ effector T cell function correlates with genomically encoded T cell antigen receptor (TCR) chains, which suggests that clonal TCR selection is not the main determinant of the differentiation of γδ effector cells. A high-resolution transcriptome analysis of all emergent γδ thymocyte subsets segregated on the basis of use of the TCR γ-chain or δ-chain indicated the existence of three separate subtypes of γδ effector cells in the thymus. The immature γδ subsets were distinguished by unique transcription-factor modules that program effector function.


Subject(s)
Cell Differentiation/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Transcriptome/immunology , Age Factors , Animals , CD24 Antigen/immunology , CD24 Antigen/metabolism , Cell Differentiation/genetics , Cell Lineage/immunology , Fetus/cytology , Fetus/immunology , Flow Cytometry , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-17/immunology , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Models, Immunological , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Principal Component Analysis , Receptors, Antigen, T-Cell, gamma-delta/classification , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism , Transcriptome/genetics
4.
Environ Mol Mutagen ; 52(2): 130-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20839230

ABSTRACT

Interactions between bleomycin (BLM) and conventional or unconventional intercalating agents were analyzed in an assay for mitotic gene conversion at the trp5 locus and reversion of the ilv1-92 allele in Saccharomyces cerevisiae strain D7. BLM is a potent recombinagen and mutagen in the assay. Various chemicals modulate the genetic activity of BLM, producing either antimutagenic effects or enhanced genotoxicity. Effects of cationic amino compounds include enhancement of BLM activity by aminoacridines and protection against BLM by aliphatic amines. The potentiation of BLM is similar to findings in a micronucleus-based BLM amplification assay in Chinese hamster V79 cells. In this study, the amplification of BLM activity was explored in yeast using known intercalators, compounds structurally related to known intercalators, and unconventional intercalators that were identified on the basis of computer modeling or results in the Chinese hamster BLM amplification assay. As shown in previous studies, the classical intercalator 9-aminoacridine (9AA) caused dose-dependent enhancement of BLM activity. Other compounds found to enhance the induction of mitotic recombination and point mutations in strain D7 were chlorpromazine, chloroquine, mefloquine, tamoxifen, diphenhydramine, benzophenone, and 3-hydroxybenzophenone. The increased activity was detectable by cotreatment of yeast with BLM and the modulator compound in growth medium or by separate interaction of the intercalator with DNA followed by BLM treatment of nongrowing cells in buffer. The data support the interpretation drawn from micronucleus assays in mammalian cells that BLM enhancement results from DNA intercalation and may be useful in detecting noncovalent interactions with DNA. Environ.


Subject(s)
Bleomycin/pharmacology , Intercalating Agents/pharmacology , Mutagens/pharmacology , Recombination, Genetic/drug effects , Saccharomyces cerevisiae/drug effects , Amines/pharmacology , Animals , Benzophenones/pharmacology , Cell Line , Chloroquine/pharmacology , Chlorpromazine/pharmacology , Cricetinae , DNA Damage , Drug Synergism , Gene Conversion/drug effects , Mefloquine/pharmacology , Mutagenicity Tests , Saccharomyces cerevisiae/genetics , Tamoxifen/pharmacology
5.
Mutagenesis ; 24(4): 317-29, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19406902

ABSTRACT

Strain D7 of Saccharomyces cerevisiae was used to measure the induction by bleomycin (BLM) of mitotic recombination at the trp5 locus and point mutations at ilv1 in the presence and absence of acridine compounds. BLM is a potent mutagen and recombinagen in the D7 assay. The acridines vary, some being mutagenic or recombinagenic and others not. Combined treatments were used to distinguish whether a genetically inactive acridine has no effect on the genetic activity of BLM or modulates its action. When an acridine is itself genetically active, combined treatments were used to determine whether its effects are additive with those of BLM or whether there is interaction between the two compounds. Acridine compounds that share the ability to intercalate between the base pairs of DNA but differ in their mutagenic specificity owing to the presence of different substituent groups were analysed. Clear potentiation and synergistic interactions were detected in combined treatments with BLM and aminoacridines, nitroacridines or an acridine mustard. Potentiation and synergy were also observed in sequential exposures in which the yeast were grown in the presence of acridine compounds and then treated with BLM in the absence of free acridine. The results are consistent with an increase in BLM susceptibility conferred by acridine intercalation. It is likely that the intercalating agents increase the access of BLM to the minor groove of DNA, where it abstracts a hydrogen from the 4' position of deoxyribose, creating a free radical that is processed into strand breaks.


Subject(s)
Acridines/pharmacology , Bleomycin/pharmacology , Mutagens , Recombination, Genetic , Saccharomyces cerevisiae/drug effects , Alleles , Antibiotics, Antineoplastic/pharmacology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Free Radicals , Gene Conversion/drug effects , Genes, Fungal/drug effects , Models, Chemical , Mutagenicity Tests , Point Mutation , Saccharomyces cerevisiae/metabolism
6.
Mutat Res ; 623(1-2): 41-52, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17428504

ABSTRACT

The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve noncovalent association with DNA, altered BLM access to DNA, and modulation of physiological conditions.


Subject(s)
Bleomycin/toxicity , DNA, Fungal/drug effects , Mutagens/toxicity , Amines/pharmacology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Drug Interactions , Gene Conversion/drug effects , Genes, Fungal/drug effects , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...