Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Rheumatology (Oxford) ; 62(9): 3169-3178, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36661300

ABSTRACT

OBJECTIVE: Divergent therapeutic outcomes on different disease domains have been noted with IL-23 and IL-17A-blockade in PsA. Therefore, elucidating the role of RORγt, the master regulator of type 17 immune responses, is of potential therapeutic interest. To this end, RORγt inhibition was assessed in combined skin, joint and gut inflammation in vivo, using a PsA model. METHODS: We tested the efficacy of a RORγt antagonist in B10.RIII mice challenged with systemic overexpression of IL-23 by hydrodynamic injection of IL-23 enhanced episomal vector (IL-23 EEV). Clinical outcomes were evaluated by histopathology. Bone density and surface erosions were examined using micro-computed tomography. Cytokine production was measured in serum and by intracellular flow cytometry. Gene expression in PsA-related tissues was analysed by qPCR. RESULTS: RORγt-blockade significantly ameliorated psoriasis, peripheral arthritis and colitis development in IL-23 EEV mice (improvement of clinical scores and weight loss respectively by 91.8%, 58.2% and 7.0%, P < 0.001), in line with profound suppression of an enhanced type IL-17 immune signature in PsA-affected tissues. Moreover, inflammation-induced bone loss and bone erosions were reduced (P < 0.05 in calcaneus, P < 0.01 in tibia). Sustained IL-23 overexpression resulted in only mild signs of sacroiliitis. Gamma-delta (γδ)-T cells, the dominant source of T cell-derived IL-17A and IL-22, were expanded during IL-23 overexpression, and together with Th17 cells, clearly countered by RORγt inhibition (P < 0.001). CONCLUSION: RORγt-blockade shows therapeutic efficacy in a preclinical PsA model with protection towards extra-musculoskeletal manifestations, reflected by a clear attenuation of type 17 cytokine responses by γδ-T cells and Th17 cells.


Subject(s)
Arthritis, Experimental , Arthritis, Psoriatic , Mice , Animals , Interleukin-17/metabolism , Arthritis, Psoriatic/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , X-Ray Microtomography , Inflammation/pathology , Cytokines , Interleukin-23/metabolism
2.
Arthritis Rheumatol ; 73(12): 2206-2218, 2021 12.
Article in English | MEDLINE | ID: mdl-34423919

ABSTRACT

OBJECTIVE: To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS: Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS: In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION: These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.


Subject(s)
Arthritis, Experimental/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Isoquinolines/therapeutic use , Lactams/therapeutic use , Macrophages/drug effects , Rheumatic Diseases/drug therapy , Synoviocytes/drug effects , Animals , Arthritis, Experimental/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/immunology , Isoquinolines/pharmacology , Lactams/pharmacology , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Mice , Rats , Rheumatic Diseases/immunology , Synoviocytes/immunology
3.
J Med Chem ; 61(19): 8597-8612, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30113844

ABSTRACT

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling. Intervention with monoclonal antibodies (mAbs) or JAK1 inhibitors has demonstrated efficacy in Phase III psoriasis, psoriatic arthritis, inflammatory bowel disease, and rheumatoid arthritis studies, leading to multiple drug approvals. We hypothesized that a dual JAK1/TYK2 inhibitor will provide additional efficacy, while managing risk by optimizing selectivity against JAK2 driven hematopoietic changes. Our program began with a conformationally constrained piperazinyl-pyrimidine Type 1 ATP site inhibitor, subsequent work led to the discovery of PF-06700841 (compound 23), which is in Phase II clinical development (NCT02969018, NCT02958865, NCT03395184, and NCT02974868).


Subject(s)
Antitubercular Agents/pharmacology , Arthritis, Experimental/prevention & control , Janus Kinase 1/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Tuberculosis/complications , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/microbiology , Female , Molecular Structure , Rats , Rats, Inbred Lew , Tuberculosis/microbiology
4.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29298069

ABSTRACT

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cyclobutanes/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Arthritis, Experimental/drug therapy , Cyclobutanes/chemistry , Cyclobutanes/pharmacokinetics , Cyclobutanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Tissue Distribution
5.
J Med Chem ; 60(13): 5521-5542, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28498658

ABSTRACT

Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.


Subject(s)
Drug Discovery , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Isoquinolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Dose-Response Relationship, Drug , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Lactams , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
ACS Chem Biol ; 11(12): 3442-3451, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27791347

ABSTRACT

PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Arthritis, Experimental/immunology , Disease Models, Animal , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/immunology , Interleukin-1beta/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology
7.
Proc Natl Acad Sci U S A ; 113(35): 9852-7, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27516546

ABSTRACT

Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics.


Subject(s)
Cytokines/metabolism , Janus Kinase Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cytokines/genetics , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/immunology , Immunogenetic Phenomena/drug effects , Immunogenetic Phenomena/genetics , Janus Kinases/genetics , Janus Kinases/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/immunology
8.
Arthritis Rheum ; 64(11): 3531-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899318

ABSTRACT

OBJECTIVE: The mechanistic link between Janus kinase (JAK) signaling and structural damage to arthritic joints in rheumatoid arthritis (RA) is poorly understood. This study was undertaken to investigate how selective inhibition of JAK with tofacitinib (CP-690,550) affects osteoclast-mediated bone resorption in a rat adjuvant-induced arthritis (AIA) model, as well as human T lymphocyte RANKL production and human osteoclast differentiation and function. METHODS: Hind paw edema, inflammatory cell infiltration, and osteoclast-mediated bone resorption in rat AIA were assessed using plethysmography, histopathologic analysis, and immunohistochemistry; plasma and hind paw tissue levels of cytokines and chemokines (including RANKL) were also assessed. In vitro RANKL production by activated human T lymphocytes was evaluated by immunoassay, while human osteoclast differentiation and function were assessed via quantitative tartrate-resistant acid phosphatase staining and degradation of human bone collagen, respectively. RESULTS: Edema, inflammation, and osteoclast-mediated bone resorption in rats with AIA were dramatically reduced after 7 days of treatment with the JAK inhibitor, which correlated with reduced numbers of CD68/ED-1+, CD3+, and RANKL+ cells in the paws; interleukin-6 (transcript and protein) levels were rapidly reduced in paw tissue within 4 hours of the first dose, whereas it took 4-7 days of therapy for RANKL levels to decrease. Tofacitinib did not impact human osteoclast differentiation or function, but did decrease human T lymphocyte RANKL production in a concentration-dependent manner. CONCLUSION: These results suggest that the JAK inhibitor tofacitinib suppresses osteoclast-mediated structural damage to arthritic joints, and this effect is secondary to decreased RANKL production.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Janus Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RANK Ligand/metabolism , Animals , Arthritis, Experimental/immunology , Bone Resorption/drug therapy , Bone Resorption/immunology , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Janus Kinases/metabolism , Macrophages/cytology , Macrophages/drug effects , Monocytes/cytology , Monocytes/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/enzymology , Piperidines , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/enzymology
9.
Arthritis Rheum ; 62(8): 2283-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20506481

ABSTRACT

OBJECTIVE: All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. METHODS: JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22- and erythropoietin (EPO)-mediated models, while on-target signaling was measured by IL-2-mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. RESULTS: In vitro, WYE-151650 potently suppressed IL-2-induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10-29-fold less activity against JAK-3-independent IL-6- or GM-CSF-induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2-induced STAT phosphorylation, but not IL-6-induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3-mediated IL-2-induced interferon-gamma production and decreased the natural killer cell population in mice, while not affecting IL-22-induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. CONCLUSION: In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1-, JAK-2-, or Tyk-2-dependent cytokine pathways for efficacy.


Subject(s)
Arthritis, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Analysis of Variance , Animals , Arthritis, Experimental/metabolism , Blotting, Western , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects , Signal Transduction/drug effects
10.
Neurosci Lett ; 362(2): 150-3, 2004 May 20.
Article in English | MEDLINE | ID: mdl-15193774

ABSTRACT

Sensory irritants initiate respiratory reflexes by stimulating trigeminal sensory nerves. The vanilloid receptor (TRPV1) is expressed on sensory C fibers. The current experiments were aimed at examining the role of this receptor in mediating responses to several airborne irritants including an acidic (acetic acid), electrophilic (acrolein), and lipophilic solvent (styrene) vapor. Wild-type (C57Bl/6J) and VR1 knockout [B6.129S4-VR1(tm1jul)] mice were exposed to these irritants and breathing pattern responses were assessed by plethysmographic techniques; both wild-type and knockout animals responded similarly to the irritants. The TRPV1 antagonist iodoresiniferatoxin was also without effect on the responses to the irritants. Thus, in the C57Bl/6J mouse the TRPV1 receptor does not appear to play a major role in the stimulation of nasal trigeminal central reflex responses by these irritant air pollutants.


Subject(s)
Air Pollutants/pharmacology , Inhalation/drug effects , Receptors, Drug/physiology , Acetic Acid/pharmacology , Acrolein/pharmacology , Animals , Female , Inhalation/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Drug/deficiency , Receptors, Drug/genetics , Styrene/pharmacology
11.
J Appl Physiol (1985) ; 94(4): 1563-71, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12626476

ABSTRACT

The immediate responses of the upper respiratory tract (URT) to the irritants acrolein and acetic acid were examined in healthy and allergic airway-diseased C57Bl/6J mice. Acrolein (1.1 ppm) and acetic acid (330 ppm) vapors induced an immediate increase in flow resistance, as measured in the surgically isolated URT of urethane-anesthetized healthy animals. Acrolein, but not acetic acid, induced a small URT vasodilatory response. In awake spontaneously breathing mice, both vapors induced a prolonged pause at the start of expiration (a response mediated via stimulation of nasal trigeminal nerves) and an increase in total respiratory specific airway flow resistance, the magnitude of which was similar to that observed in the isolated URT. Both responses were significantly reduced in animals pretreated with large doses of capsaicin to defunctionalize sensory nerves, strongly suggesting a role for sensory nerves in development of these responses. The breathing pattern and/or obstructive responses were enhanced in mice with ovalbumin-induced allergic airway disease. These results suggest that the primary responses to acrolein and acetic acid vapors are altered breathing patterns and airway obstruction, that sensory nerves play an important role in these responses, and that these responses are enhanced in animals with allergic airway disease.


Subject(s)
Hypersensitivity/physiopathology , Irritants/pharmacology , Neurons, Afferent/physiology , Respiration/drug effects , Respiratory Physiological Phenomena , Respiratory Tract Diseases/physiopathology , Acetic Acid/administration & dosage , Acrolein/administration & dosage , Administration, Inhalation , Airway Obstruction/chemically induced , Airway Resistance/drug effects , Animals , Female , Hypersensitivity/immunology , Male , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Pulmonary Ventilation/drug effects , Respiratory Mechanics/drug effects , Respiratory System/blood supply , Respiratory System/drug effects , Respiratory Tract Diseases/immunology , Vasodilation
12.
J Toxicol Environ Health A ; 65(23): 1999-2005, 2002 Dec 13.
Article in English | MEDLINE | ID: mdl-12490044

ABSTRACT

The effect of exposure to irritant air pollutants on the development of allergic airway disease is poorly understood. This study examines the effects of the lower respiratory tract irritant, NO(2), on the outcome of ovalbumin (OVA)-induced allergic airway disease. Male and female C57Bl/6 mice were sensitized by weekly intraperitoneal (ip) OVA injections for 3 wk followed by daily 1-h OVA aerosol inhalation challenge for 3 or 10 d. Initially, mice were exposed daily for 3 d to air or 0.7 or 5 ppm NO(2) for 2 h following each OVA aerosol challenge. OVA exposure resulted in pronounced lower airway inflammation, as evidenced by a significant increase in bronchoalveolar lavage (BAL) total cellularity and eosinophil levels. BAL eosinophil levels were significantly lower in OVA-NO(2) compared to OVA-air animals. The reduction was similar at both NO(2) exposure concentrations. In a subsequent study, sensitized animals were exposed for 3 or 10 d to aerosolized OVA followed by air or 0.7 ppm NO(2). BAL eosinophils were again reduced at 3 d by OVA-NO(2) exposure compared to OVA-air mice. At 10 d the eosinophilia was virtually abolished. This reduction in OVA-induced cellular inflammation by NO(2) was confirmed by histopathological analysis. Contrary to expectations, exposure to NO(2) during the aerosol challenge to OVA dramatically diminished the outcome of allergic disease in lungs as measured by airway cellular inflammation.


Subject(s)
Hypersensitivity/physiopathology , Inhalation Exposure , Lung Diseases/chemically induced , Lung Diseases/immunology , Nitrogen Dioxide/adverse effects , Oxidants, Photochemical/adverse effects , Aerosols , Animals , Disease Models, Animal , Humans , Inflammation , Lung Diseases/veterinary , Mice , Mice, Inbred C57BL , Nitrogen Dioxide/administration & dosage , Oxidants, Photochemical/administration & dosage
13.
Toxicol Lett ; 126(1): 31-9, 2002 Jan 05.
Article in English | MEDLINE | ID: mdl-11738268

ABSTRACT

Vinyl acetate is an ester that is used to make polyvinyl acetate based polymers that are used in the manufacture of latex paints and adhesives. Chronic oral exposure to high concentrations of vinyl acetate induces oral tumors in rodents. Since carboxylesterase-dependent hydrolysis of VA to acetic acid and acetaldehyde has been implicated in the nasal inhalation carcinogenesis of this ester, the potential for oral mucosa of the F344 rat and BDF mouse to hydrolyze VA was examined. Homogenates were prepared by scraping the mucosa from four regions of the oral cavity: dorsal interior (all tissues interior to the teeth), dorsal tongue surface, ventral interior (sublingual area and lower interior tissues) and exterior (all tissues exterior to the teeth). The oral cavity was rinsed once with saline prior to dissection to determine if oral secretions possessed metabolic capacity. Aliquots of the homogenates or rinse fluid were incubated for 30 min with varying concentrations of vinyl acetate (0.05-10 mM), and the production of acetaldehyde was quantitated by HPLC. All tissue regions possessed VA hydrolysis activity. In both species the hydrolysis activity was greatest in the dorsal interior region (Vmax of 90 and 6 nmol/min in the rat and mouse, respectively, Km values of 0.5 and 0.9 mM). Activity in the other oral regions was 2-15-fold lower. Activity was observed in the rinse fluid, but was 20-fold or more lower than the dorsal interior region. Finally, solutions of vinyl acetate were placed in the mouth of anesthetized rats for 10 min and then analyzed for acetaldehyde concentrations. Acetaldehyde was detected in these solutions providing evidence that metabolism of this ester occurs in vivo in oral tissues.


Subject(s)
Mouth Mucosa/metabolism , Vinyl Compounds/pharmacokinetics , Acetaldehyde/metabolism , Acid Phosphatase/metabolism , Animals , Coloring Agents/pharmacokinetics , Evans Blue/pharmacokinetics , Kinetics , Male , Mice , Mouth Mucosa/drug effects , Rats , Rats, Inbred F344 , Vinyl Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...