Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 13: 918211, 2022.
Article in English | MEDLINE | ID: mdl-35982697

ABSTRACT

Ascochyta fabae Speg. is a serious foliar fungal disease of faba bean and a constraint to production worldwide. This study investigated the phenotypic and genotypic diversity of the A. fabae pathogen population in southern Australia and the pathogenic variability of the population was examined on a differential set of faba bean cultivars. The host set was inoculated with 154 A. fabae isolates collected from 2015 to 2018 and a range of disease reactions from high to low aggressiveness was observed. Eighty percent of isolates collected from 2015 to 2018 were categorized as pathogenicity group (PG) PG-2 (pathogenic on Farah) and were detected in every region in each year of collection. Four percent of isolates were non-pathogenic on Farah and designated as PG-1. A small group of isolates (16%) were pathogenic on the most resistant differential cultivars, PBA Samira or Nura, and these isolates were designated PG-3. Mating types of 311 isolates collected between 1991 and 2018 were determined and showed an equal ratio of MAT1-1 and MAT1-2 in the southern Australian population. The genetic diversity and population structure of 305 isolates were examined using DArTseq genotyping, and results suggest no association of genotype with any of the population descriptors viz.: collection year, region, host cultivar, mating type, or PG. A Genome-Wide Association Study (GWAS) was performed to assess genetic association with pathogenicity traits and a significant trait-associated genomic locus for disease in Farah AR and PBA Zahra, and PG was revealed. The high frequency of mating of A. fabae indicated by the wide distribution of the two mating types means changes to virulence genes would be quickly distributed to other genotypes. Continued monitoring of the A. fabae pathogen population through pathogenicity testing will be important to identify any increases in aggressiveness or emergence of novel PGs. GWAS and future genetic studies using biparental mating populations could be useful for identifying virulence genes responsible for the observed changes in pathogenicity.

2.
Article in English | MEDLINE | ID: mdl-35777526

ABSTRACT

AIM: Psychedelic compounds elicit relief from mental disorders. However, the underpinnings of therapeutic improvement remain poorly understood. Here, we investigated the effects of repeated lysergic acid diethylamide (LSD) on whole-genome DNA methylation and protein expression in the mouse prefrontal cortex (PFC). METHODS: Whole genome bisulphite sequencing (WGBS) and proteomics profiling of the mouse prefrontal cortex (PFC) were performed to assess DNA methylation and protein expression changes following 7 days of repeated LSD administration (30 µg/kg/day); a treatment we previously found to potentiate excitatory neurotransmission and to increase dendritic spine density in the PFC in mice. qRT-PCR was employed to validate candidate genes detected in both analyses. RESULTS: LSD significantly modulated DNA methylation in 635 CpG sites of the mouse PFC, and in an independent cohort the expression level of 178 proteins. Gene signaling pathways affected are involved in nervous system development, axon guidance, synaptic plasticity, quantity and cell viability of neurons and protein translation. Four genes and their protein product were detected as differentially methylated and expressed, and their transcription was increased. Specifically, Coronin 7 (Coro7), an axon guidance cue; Penta-EF-Hand Domain Containing 1 (Pef1), an mTORC1 and cell cycle modulator; Ribosomal Protein S24 (Rps24), required for pre-rRNA maturation and biogenesis of proteins involved with cell proliferation and migration, and Abhydrolase Domain Containing 6, Acylglycerol Lipase (Abhd6), a post-synaptic lipase. CONCLUSIONS: LSD affects DNA methylation, altering gene expression and protein expression related to neurotropic-, neurotrophic- and neuroplasticity signaling. This could represent a core mechanism mediating the effects of psychedelics.


Subject(s)
Hallucinogens , Lysergic Acid Diethylamide , Animals , DNA Methylation , Humans , Lipase/metabolism , Lysergic Acid Diethylamide/pharmacology , Mice , Monoacylglycerol Lipases/metabolism , Neuronal Plasticity , Prefrontal Cortex/metabolism , Proteomics
3.
Mol Plant Pathol ; 23(7): 984-996, 2022 07.
Article in English | MEDLINE | ID: mdl-35246929

ABSTRACT

Ascochyta lentis is a fungal pathogen that causes ascochyta blight in the important grain legume species lentil, but little is known about the molecular mechanism of disease or host specificity. We employed a map-based cloning approach using a biparental A. lentis population to clone the gene AlAvr1-1 that encodes avirulence towards the lentil cultivar PBA Hurricane XT. The mapping population was produced by mating A. lentis isolate P94-24, which is pathogenic on the cultivar Nipper and avirulent towards Hurricane, and the isolate AlKewell, which is pathogenic towards Hurricane but not Nipper. Using agroinfiltration, we found that AlAvr1-1 from the isolate P94-24 causes necrosis in Hurricane but not in Nipper. The homologous corresponding gene in AlKewell, AlAvr1-2, encodes a protein with amino acid variation at 23 sites and four of these sites have been positively selected in the P94-24 branch of the phylogeny. Loss of AlAvr1-1 in a gene knockout experiment produced a P94-24 mutant strain that is virulent on Hurricane. Deletion of AlAvr1-2 in AlKewell led to reduced pathogenicity on Hurricane, suggesting that the gene may contribute to disease in Hurricane. Deletion of AlAvr1-2 did not affect virulence for Nipper and AlAvr1-2 is therefore not an avirulence gene for Nipper. We conclude that the hemibiotrophic pathogen A. lentis has an avirulence effector, AlAvr1-1, that triggers a hypersensitive resistance response in Hurricane. This is the first avirulence gene to be characterized in a legume pathogen from the Pleosporales and may help progress research on other damaging Ascochyta pathogens.


Subject(s)
Ascomycota , Fabaceae , Lens Plant , Ascomycota/genetics , Fabaceae/microbiology , Host Specificity , Lens Plant/genetics , Lens Plant/microbiology
4.
G3 (Bethesda) ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33604672

ABSTRACT

Ascochyta lentis causes ascochyta blight in lentil (Lens culinaris Medik.) and yield loss can be as high as 50%. With careful agronomic management practices, fungicide use, and advances in breeding resistant lentil varieties, disease severity and impact to farmers have been largely controlled. However, evidence from major lentil producing countries, Canada and Australia, suggests that A. lentis isolates can change their virulence profile and level of aggressiveness over time and under different selection pressures. In this paper, we describe the first genome assembly for A. lentis for the Australian isolate Al4, through the integration of data from Illumina and PacBio SMRT sequencing. The Al4 reference genome assembly is almost 42 Mb in size and encodes 11,638 predicted genes. The Al4 genome comprises 21 full-length and gapless chromosomal contigs and two partial chromosome contigs each with one telomere. We predicted 31 secondary metabolite clusters, and 38 putative protein effectors, many of which were classified as having an unknown function. Comparison of A. lentis genome features with the recently published reference assembly for closely related A. rabiei show that genome synteny between these species is highly conserved. However, there are several translocations and inversions of genome sequence. The location of secondary metabolite clusters near transposable element and repeat-rich genomic regions was common for A. lentis as has been reported for other fungal plant pathogens.


Subject(s)
Ascomycota , Plant Diseases , Australia , Plant Breeding
5.
Toxins (Basel) ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283749

ABSTRACT

Pyrenophora is a fungal genus responsible for a number of major cereal diseases. Although fungi produce many specialised or secondary metabolites for defence and interacting with the surrounding environment, the repertoire of specialised metabolites (SM) within Pyrenophora pathogenic species remains mostly uncharted. In this study, an in-depth comparative analysis of the P. teres f. teres, P teres f. maculata and P. tritici-repentis potential to produce SMs, based on in silico predicted biosynthetic gene clusters (BGCs), was conducted using genome assemblies from PacBio DNA reads. Conservation of BGCs between the Pyrenophora species included type I polyketide synthases, terpene synthases and the first reporting of a type III polyketide synthase in P teres f. maculata. P. teres isolates exhibited substantial expansion of non-ribosomal peptide synthases relative to P. tritici-repentis, hallmarked by the presence of tailoring cis-acting nitrogen methyltransferase domains. P. teres isolates also possessed unique non-ribosomal peptide synthase (NRPS)-indole and indole BGCs, while a P. tritici-repentis phytotoxin BGC for triticone production was absent in P. teres. These differences highlight diversification between the pathogens that reflects their different evolutionary histories, host adaption and lifestyles.


Subject(s)
Ascomycota/genetics , Evolution, Molecular , Fungal Proteins/genetics , Genome, Fungal , Multigene Family , Ascomycota/metabolism , Ascomycota/pathogenicity , Conserved Sequence , Databases, Genetic , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal , Phylogeny , Sequence Analysis, DNA
6.
Front Microbiol ; 11: 217, 2020.
Article in English | MEDLINE | ID: mdl-32132988

ABSTRACT

Chocolate spot is a major fungal disease of faba bean caused by the ascomycete fungus, Botrytis fabae. B. fabae is also implicated in botrytis gray mold disease in lentils, along with B. cinerea. Here we have isolated and characterized two B. fabae isolates from chocolate spot lesions on faba bean leaves. In plant disease assays on faba bean and lentil, B. fabae was more aggressive than B. cinerea and we observed variation in susceptibility among a small set of cultivars for both plant hosts. Using light microscopy, we observed a spreading, generalized necrosis response in faba bean toward B. fabae. In contrast, the plant response to B. cinerea was localized to epidermal cells underlying germinated spores and appressoria. In addition to the species characterization of B. fabae, we produced genome assemblies for both B. fabae isolates using Illumina sequencing. Genome sequencing coverage and assembly size for B. fabae isolates, were 27x and 45x, and 43.2 and 44.5 Mb, respectively. Following genome assembly and annotation, carbohydrate-active enzyme (CAZymes) and effector genes were predicted. There were no major differences in the numbers of each of the major classes of CAZymes. We predicted 29 effector genes for B. fabae, and using the same selection criteria for B. cinerea, we predicted 34 putative effector genes. For five of the predicted effector genes, the pairwise dN/dS ratio between orthologs from B. fabae and B. cinerea was greater than 1.0, suggesting positive selection and the potential evolution of molecular mechanisms for host specificity in B. fabae. Furthermore, a homology search of secondary metabolite clusters revealed the absence of the B. cinerea phytotoxin botrydial and several other uncharacterized secondary metabolite biosynthesis genes from B. fabae. Although there were no obvious differences in the number or proportional representation of different transposable element classes, the overall proportion of AT-rich DNA sequence in B. fabae was double that of B. cinerea.

7.
Nat Genet ; 51(9): 1411-1422, 2019 09.
Article in English | MEDLINE | ID: mdl-31477930

ABSTRACT

We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel's original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Fabaceae/genetics , Genome, Plant , Pisum sativum/genetics , Plant Proteins/genetics , Quantitative Trait Loci , Chromosome Mapping , Fabaceae/classification , Gene Expression Regulation, Plant , Genetic Variation , Genomics , Phenotype , Phylogeny , Reference Standards , Repetitive Sequences, Nucleic Acid , Seed Storage Proteins/genetics , Whole Genome Sequencing
8.
mSphere ; 4(5)2019 09 25.
Article in English | MEDLINE | ID: mdl-31554725

ABSTRACT

The polyketide-derived secondary metabolite ascochitine is produced by species in the Didymellaceae family, including but not restricted to Ascochyta species pathogens of cool-season food legumes. Ascochitine is structurally similar to the well-known mycotoxin citrinin and exhibits broad-spectrum phytotoxicity and antimicrobial activities. Here, we identified a polyketide synthase (PKS) gene (denoted pksAC) responsible for ascochitine production in the filamentous fungus Ascochyta fabae Deletion of the pksAC prevented production of ascochitine and its derivative ascochital in A. fabae The putative ascochitine biosynthesis gene cluster comprises 11 genes that have undergone rearrangement and gain-and-loss events relative to the citrinin biosynthesis gene cluster in Monascus ruber Interestingly, we also identified pksAC homologs in two recently diverged species, A. lentis and A. lentis var. lathyri, that are sister taxa closely related to ascochitine producers such as A. fabae and A. viciae-villosae However, nonsense mutations have been independently introduced in coding sequences of the pksAC homologs of A. lentis and A. lentis var. lathyri that resulted in loss of ascochitine production. Despite its reported phytotoxicity, ascochitine was not a pathogenicity factor in A. fabae infection and colonization of faba bean (Vicia faba L.). Ascochitine was mainly produced from mature hyphae at the site of pycnidial formation, suggesting a possible protective role of the compound against other microbial competitors in nature. This report highlights the evolution of gene clusters harnessing the structural diversity of polyketides and a mechanism with the potential to alter secondary metabolite profiles via single nucleotide polymorphisms in closely related fungal species.IMPORTANCE Fungi produce a diverse array of secondary metabolites, many of which are of pharmacological importance whereas many others are noted for mycotoxins, such as aflatoxin and citrinin, that can threaten human and animal health. The polyketide-derived compound ascochitine, which is structurally similar to citrinin mycotoxin, has been considered to be important for pathogenicity of legume-associated Ascochyta species. Here, we identified the ascochitine polyketide synthase (PKS) gene in Ascochyta fabae and its neighboring genes that may be involved in ascochitine biosynthesis. Interestingly, the ascochitine PKS genes in other legume-associated Ascochyta species have been mutated, encoding truncated PKSs. This indicated that point mutations may have contributed to genetic diversity for secondary metabolite production in these fungi. We also demonstrated that ascochitine is not a pathogenicity factor in A. fabae The antifungal activities and production of ascochitine during sporulation suggested that it may play a role in competition with other saprobic fungi in nature.


Subject(s)
Ascomycota/genetics , Genetic Variation , Mycotoxins/biosynthesis , Polyketide Synthases/genetics , Ascomycota/enzymology , Multigene Family , Point Mutation , Sequence Analysis, DNA
9.
Genome Biol Evol ; 10(9): 2443-2457, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30184068

ABSTRACT

We report a fungal pan-genome study involving Parastagonospora spp., including 21 isolates of the wheat (Triticum aestivum) pathogen Parastagonospora nodorum, 10 of the grass-infecting Parastagonospora avenae, and 2 of a closely related undefined sister species. We observed substantial variation in the distribution of polymorphisms across the pan-genome, including repeat-induced point mutations, diversifying selection and gene gains and losses. We also discovered chromosome-scale inter and intraspecific presence/absence variation of some sequences, suggesting the occurrence of one or more accessory chromosomes or regions that may play a role in host-pathogen interactions. The presence of known pathogenicity effector loci SnToxA, SnTox1, and SnTox3 varied substantially among isolates. Three P. nodorum isolates lacked functional versions for all three loci, whereas three P. avenae isolates carried one or both of the SnTox1 and SnTox3 genes, indicating previously unrecognized potential for discovering additional effectors in the P. nodorum-wheat pathosystem. We utilized the pan-genomic comparative analysis to improve the prediction of pathogenicity effector candidates, recovering the three confirmed effectors among our top-ranked candidates. We propose applying this pan-genomic approach to identify the effector repertoire involved in other host-microbe interactions involving necrotrophic pathogens in the Pezizomycotina.


Subject(s)
Ascomycota/genetics , Evolution, Molecular , Genome, Fungal , Plant Diseases/microbiology , Triticum/microbiology , Ascomycota/pathogenicity , Ascomycota/physiology , Fungal Proteins/genetics , Genetic Loci , Genomics , Host-Pathogen Interactions , Phylogeny , Point Mutation , Polymorphism, Genetic , Quantitative Trait Loci
10.
Front Genet ; 9: 130, 2018.
Article in English | MEDLINE | ID: mdl-29720997

ABSTRACT

Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host-pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host-pathogen interactions.

11.
Mol Plant Microbe Interact ; 31(8): 779-788, 2018 08.
Article in English | MEDLINE | ID: mdl-29664319

ABSTRACT

Fungal pathogen genomes can often be divided into core and accessory regions. Accessory regions ARs) may be comprised of either ARs (within core chromosomes (CCs) or wholly dispensable (accessory) chromosomes (ACs). Fungal ACs and ARs typically accumulate mutations and structural rearrangements more rapidly over time than CCs and many harbor genes relevant to host-pathogen interactions. These regions are of particular interest in plant pathology and include host-specific virulence factors and secondary metabolite synthesis gene clusters. This review outlines known ACs and ARs in fungal genomes, methods used for their detection, their common properties that differentiate them from the core genome, and what is currently known of their various roles in pathogenicity. Reports on the evolutionary processes generating and shaping AC and AR compartments are discussed, including repeat induced point mutation and breakage fusion bridge cycles. Previously ACs have been studied extensively within key genera, including Fusarium, Zymoseptoria, and Alternaria, but are growing in frequency of observation and perceived importance across a wider range of fungal species. Recent advances in sequencing technologies permit affordable genome assembly and resequencing of populations that will facilitate further discovery and routine screening of ACs.


Subject(s)
Chromosomes, Fungal/genetics , DNA, Fungal/genetics , Fungi/genetics , Plant Diseases/microbiology , Plants/microbiology , Genome, Fungal/genetics
12.
Curr Opin Microbiol ; 46: 43-49, 2018 12.
Article in English | MEDLINE | ID: mdl-29462764

ABSTRACT

Effector proteins are important virulence factors of fungal plant pathogens and their prediction largely relies on bioinformatic methods. In this review we outline the current methods for the prediction of fungal plant pathogenicity effector proteins. Some fungal effectors have been characterised and are represented by conserved motifs or in sequence repositories, however most fungal effectors do not generally exhibit high conservation of amino acid sequence. Therefore various predictive methods have been developed around: general properties, structure, position in the genomic landscape, and detection of mutations including repeat-induced point mutations and positive selection. A combinatorial approach incorporating several of these methods is often employed and candidates can be prioritised by either ranked scores or hierarchical clustering.


Subject(s)
Fungal Proteins/chemistry , Fungi/metabolism , Plant Diseases/microbiology , Computational Biology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/chemistry , Fungi/genetics , Fungi/pathogenicity , Host-Pathogen Interactions , Sequence Alignment , Virulence
13.
J Proteome Res ; 16(2): 384-392, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28152591

ABSTRACT

This study aimed to compare the depth and reproducibility of total proteome and differentially expressed protein coverage in technical duplicates and triplicates using iTRAQ 4-plex, iTRAQ 8-plex, and TMT 6-plex reagents. The analysis was undertaken because comprehensive comparisons of isobaric mass tag reproducibility have not been widely reported in the literature. The highest number of proteins was identified with 4-plex, followed by 8-plex and then 6-plex reagents. Quantitative analyses revealed that more differentially expressed proteins were identified with 4-plex reagents than 8-plex reagents and 6-plex reagents. Replicate reproducibility was determined to be ≥69% for technical duplicates and ≥57% for technical triplicates. The results indicate that running an 8-plex or 6-plex experiment instead of a 4-plex experiment resulted in 26 or 39% fewer protein identifications, respectively. When 4-plex spectra were searched with three software tools-ProteinPilot, Mascot, and Proteome Discoverer-the highest number of protein identifications were obtained with Mascot. The analysis of negative controls demonstrated the importance of running experiments as replicates. Overall, this study demonstrates the advantages of using iTRAQ 4-plex reagents over iTRAQ 8-plex and TMT 6-plex reagents, provides estimates of technical duplicate and triplicate reproducibility, and emphasizes the value of running replicate samples.


Subject(s)
Ascomycota/chemistry , Fungal Proteins/analysis , Peptide Fragments/analysis , Proteome/analysis , Proteomics/standards , Fungal Proteins/chemistry , Molecular Sequence Annotation , Proteolysis , Proteome/chemistry , Proteomics/methods , Reagent Kits, Diagnostic , Reproducibility of Results , Staining and Labeling/methods , Tandem Mass Spectrometry , Trypsin/chemistry
14.
Mol Plant Pathol ; 18(3): 420-434, 2017 04.
Article in English | MEDLINE | ID: mdl-27860150

ABSTRACT

The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.


Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Conserved Sequence , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Host Specificity/genetics , Transcription Factors/metabolism , Triticum/microbiology , Ascomycota/growth & development , Epistasis, Genetic , Fungal Proteins/genetics , Gene Deletion , Phylogeny , Plant Diseases/microbiology , Polymorphism, Genetic , Promoter Regions, Genetic/genetics , Sequence Alignment , Spores, Fungal/physiology , Transcription Factors/genetics , Virulence/genetics , Zinc Fingers
15.
PLoS One ; 11(2): e0147221, 2016.
Article in English | MEDLINE | ID: mdl-26840125

ABSTRACT

Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Gene Expression Profiling , Genome, Fungal , Genomics , Proteomics , Computational Biology/methods , Gene Expression Profiling/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Proteome , Proteomics/methods , Transcriptome
16.
G3 (Bethesda) ; 3(6): 959-69, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23589517

ABSTRACT

Stagonospora nodorum is an important wheat (Triticum aestivum) pathogen in many parts of the world, causing major yield losses. It was the first species in the large fungal Dothideomycete class to be genome sequenced. The reference genome sequence (SN15) has been instrumental in the discovery of genes encoding necrotrophic effectors that induce disease symptoms in specific host genotypes. Here we present the genome sequence of two further S. nodorum strains (Sn4 and Sn79) that differ in their effector repertoire from the reference. Sn79 is avirulent on wheat and produces no apparent effectors when infiltrated onto many cultivars and mapping population parents. Sn4 is pathogenic on wheat and has virulences not found in SN15. The new strains, sequenced with short-read Illumina chemistry, are compared with SN15 by a combination of mapping and de novo assembly approaches. Each of the genomes contains a large number of strain-specific genes, many of which have no meaningful similarity to any known gene. Large contiguous sections of the reference genome are absent in the two newly sequenced strains. We refer to these differences as "sectional gene absences." The presence of genes in pathogenic strains and absence in Sn79 is added to computationally predicted properties of known proteins to produce a list of likely effector candidates. Transposon insertion was observed in the mitochondrial genomes of virulent strains where the avirulent strain retained the likely ancestral sequence. The study suggests that short-read enabled comparative genomics is an effective way to both identify new S. nodorum effector candidates and to illuminate evolutionary processes in this species.


Subject(s)
Ascomycota/genetics , Fungal Proteins/metabolism , Genes, Fungal/genetics , Genomics , Sequence Analysis, DNA/methods , Cluster Analysis , Fungal Proteins/genetics , Genes, Mating Type, Fungal , Genetic Loci/genetics , Genome, Mitochondrial/genetics , Multigene Family , Open Reading Frames/genetics , Phylogeny , Plant Diseases/microbiology , Sequence Homology, Nucleic Acid , Triticum/microbiology
17.
PLoS Pathog ; 8(1): e1002467, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22241993

ABSTRACT

The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems.


Subject(s)
Ascomycota/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins/biosynthesis , Triticum/metabolism , Disease Resistance/physiology , Fungal Proteins/genetics , Host-Pathogen Interactions , Plant Proteins/genetics , Protein Sorting Signals/physiology , Respiratory Burst/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...