Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(16): 14132-14144, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29595950

ABSTRACT

Controlling the semiconductor-to-metal transition temperature in epitaxial VO2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO2 epitaxial thin films grown on TiO2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V4+-V4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO2/TiO2 multilayer structures.

2.
J Nanosci Nanotechnol ; 17(3): 1555-563, 2017 03.
Article in English | MEDLINE | ID: mdl-29693349

ABSTRACT

In this work, the fabrication of nanocomposites with silicon nitride/oxide into the thermoelectric matrix of cobalt silicide is presented. The different concentrations of nano-Si3N4 were intentionally introduced by mechanical grinding while it was found that the nanocomposites also included SiO2 phase at micro- as well as at nano-scale. The structural and morphological modifications of the materials were studied by powder X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy. The nanocomposites were studied in terms of Hall Effect, Seebeck coefficient, electrical and thermal conductivity. Emphasis is given on the lattice thermal conductivity that was analyzed based on Effective Medium Theory and the contribution of each phase is taken into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...