Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Neuroscience ; 455: 128-140, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33359657

ABSTRACT

Examining individuals with Leber's hereditary optic neuropathy (LHON) provides a rare opportunity to understand how changes in mitochondrial DNA and loss of vision can be related to changes in organization of the whole-brain structural network architecture. In comparison with the previous neuroimaging studies with LHON participants, which were focused mainly on analyzing changes which occur in different areas of the patient's brain, network analysis not only makes it possible to observe single white matter fibers' aberrations but also the whole-brain nature of these changes. The purpose of our study was to better understand whole-brain neural network changes in LHON participants and see the correlation between the clinical data and the changes. To achieve this, we examined fifteen LHON patients and seventeen age-matched healthy subjects with the usage of ultra-high filed 7T magnetic resonance imaging (MRI). Basing on the analysis on MRI diffusion tensor imaging (DTI) data, whole-brain structural neural networks were reconstructed with the use of the minimum spanning tree algorithm (MST) for every participant. Our results revealed that the structural network in LHON participants was altered at both the local and the global level. The global network structures of LHON subjects were less centralized with path-like organization and there was an imbalance in the main hub centrality. Moreover, the inspection of nodes and hubs in terms of their anatomical placement revealed that in the LHON participants the prominent hubs were located within the basal ganglia (i.e. bilateral caudate, left pallidum), which differed them from healthy controls. An analysis of the relationships between the global MST metrics and LHON participants' clinical characteristics revealed significant correlations between the global network metrics and the duration of illness. Furthermore, the nodal parameters of the optic chiasm were significantly correlated with the duration of illness and the averaged thickness of the right retinal nerve fiber layer (RNFL). These findings clearly showed that the progression of the disease is accompanied by alterations within the brain network structure and its efficiency.


Subject(s)
Diffusion Magnetic Resonance Imaging , Optic Atrophy, Hereditary, Leber , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Optic Atrophy, Hereditary, Leber/diagnostic imaging , Retina
2.
J Clin Med ; 9(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927622

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a maternally inherited genetic disorder leading to severe and bilateral loss of central vision, with a young male predilection. In recent years, multiple studies examined structural abnormalities in visual white matter tracts such as the optic tract and optic radiation. However, it is still unclear if the disease alters only some parts of the white matter architecture or whether the changes also affect grey matter parts of the visual pathway. This study aimed at improving our understanding of morphometric changes in the lateral (LGN) and medial (MGN) geniculate nuclei and their associations with the clinical picture in LHON by the application of a submillimeter surface-based analysis approach to the ultra-high-field 7T magnetic resonance imaging data. To meet these goals, fifteen LHON patients and fifteen age-matched healthy subjects were examined. A quantitative analysis of the LGN and MGN volume was performed for all individuals. Additionally, morphometric results of LGN and MGN were correlated with variables covering selected aspects of the clinical picture of LHON. In comparison with healthy controls (HC), LHON participants showed a significantly decreased volume of the right LGN and the right MGN. Nevertheless, the volume of the right LGN was strongly correlated with the averaged thickness value of the right retinal nerve fiber layer (RNFL). The abnormalities in the volume of the LHON patients' thalamic nuclei indicate that the disease can cause changes not only in the white matter areas constituting visual tracts but also in the grey matter structures. Furthermore, the correlation between the changes in the LGN volume and the RNFL, as well as the right optic nerve surface area located proximally to the eyeball, suggest some associations between the atrophy of these structures. However, to fully confirm this observation, longitudinal studies should be conducted.

3.
J Clin Med ; 9(8)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722571

ABSTRACT

The aim of the study was to assess the volume of the lateral geniculate nucleus (LGN) in patients with open-angle glaucoma in 7Tesla MRI and to evaluate its relation to RNFL thickness and VF indices. MATERIAL AND METHODS: The studied group consisted of 20 open-angle glaucoma patients with bilaterally the same stage of glaucoma (11 with early glaucoma and nine with advanced glaucoma) and nine healthy volunteers from the Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Poland. Circumpapillary RNFL-thickness measurements were performed using OCT in all patients and visual fields were performed in the glaucoma group. A 7Tesla MRI was performed to assess the volume of both lateral geniculate bodies. RESULTS: The LGN volume varied significantly between groups from 122.1 ± 14.4 mm3 (right LGN) and 101.6 ± 13.3 mm3 (left LGN) in the control group to 80.2 ± 17.7 mm3 (right LGN) and 71.8 ± 14.2 mm3 (left LGN) in the advanced glaucoma group (right LGN p = 0.003, left LGN p = 0.018). However, volume values from early glaucoma: right LGN = 120.2 ± 26.5 mm3 and left LGN = 103.2 ± 28.0 mm3 differed significantly only from values from the advanced group (right LGN p = 0.006, left LGN p = 0.012), but not from controls (right LGN p = 0.998, left LGN p = 0.986). There were no significant correlations between visual field indices (MD (mean deviation) and VFI (visual field index)) and LGN volumes in both glaucoma groups. Significant correlations between mean RNFL (retinal nerve fiber layers) thickness and corresponding and contralateral LGN were observed for the control group (corresponding LGN: p = 0.064; contralateral LGN: p = 0.031) and early glaucoma (corresponding LGN: p = 0.017; contralateral LGN: p = 0.008), but not advanced glaucoma (corresponding LGN: p = 0.496; contralateral LGN: p = 0.258). CONCLUSIONS: The LGN volume decreases in the course of glaucoma. These changes are correlated with RNFL thickness in early stages of glaucoma and are not correlated with visual field indices.

4.
Brain Sci ; 10(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526981

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is one of the mitochondrial diseases that causes loss of central vision, progressive impairment and subsequent degeneration of retinal ganglion cells (RGCs). In recent years, diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts, such as the optic tract, and optic radiation. However, it is still unclear if the disease alters only some parts of the white matter architecture or whether the changes also affect other subcortical areas of the brain. This study aimed to improve our understanding of morphometric changes in subcortical brain areas and their associations with the clinical picture in LHON by the application of a submillimeter surface-based analysis approach to the ultra-high-field 7T magnetic resonance imaging data. To meet these goals, fifteen LHON patients and fifteen age-matched healthy subjects were examined. For all individuals, quantitative analysis of the morphometric results was performed. Furthermore, morphometric characteristics which differentiated the groups were correlated with variables covering selected aspects of the LHON clinical picture. Compared to healthy controls (HC), LHON carriers showed significantly lower volume of both palladiums (left p = 0.023; right p = 0.018), the right accumbens area (p = 0.007) and the optic chiasm (p = 0.014). Additionally, LHON patients have significantly higher volume of both lateral ventricles (left p = 0.034; right p = 0.02), both temporal horns of the lateral ventricles (left p = 0.016; right p = 0.034), 3rd ventricle (p = 0.012) and 4th ventricle (p = 0.002). Correlation between volumetric results and clinical data showed that volume of both right and left lateral ventricles significantly and positively correlated with the duration of the illness (left R = 0.841, p = 0.002; right R = 0.755, p = 0.001) and the age of the LHON participants (left R = 0.656, p = 0.007; right R = 0.691, p = 0.004). The abnormalities in volume of the LHON patients' subcortical structures indicate that the disease can cause changes not only in the white matter areas constituting visual tracts, but also in the other subcortical brain structures. Furthermore, the correlation between those results and the illness duration suggests that the disease might have a neurodegenerative nature; however, to fully confirm this observation, longitudinal studies should be conducted.

5.
J Clin Med ; 9(4)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295018

ABSTRACT

Magnetic Resonance Imaging (MRI) of the Optic Nerve is difficult due to the fine extended nature of the structure, strong local magnetic field distortions induced by anatomy, and large motion artefacts associated with eye movement. To address these problems we used a Zero Echo Time (ZTE) MRI sequence with an Adiabatic SPectral Inversion Recovery (ASPIR) fat suppression pulse which also imbues the images with Magnetisation Transfer contrast. We investigated an application of the sequence for imaging the optic nerve in subjects with Leber's hereditary optic neuropathy (LHON). Of particular note is the sequence's near-silent operation, which can enhance image quality of the optic nerve by reducing the occurrence of involuntary saccades induced during Magnetic Resonance (MR) scanning.

6.
MAGMA ; 31(2): 257-267, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28933028

ABSTRACT

OBJECTIVE: Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields. MATERIALS AND METHODS: The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects. RESULTS: Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception. CONCLUSION: This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.


Subject(s)
Echo-Planar Imaging , Magnetic Resonance Imaging , Occipital Lobe/diagnostic imaging , Temporal Lobe/diagnostic imaging , Adult , Air , Algorithms , Brain Mapping , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Male , Radio Waves , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
7.
Magn Reson Imaging ; 40: 98-108, 2017 07.
Article in English | MEDLINE | ID: mdl-28438709

ABSTRACT

The increased signal-to-noise ratio (SNR) offered by functional Magnetic Resonance Imaging (fMRI) at 7T allows the acquisition of functional data at sub-millimetric spatial resolutions. However, simply reducing partial volume effects is not sufficient to precisely localize task-induced activation due to the indirect mechanisms that relate brain function and the changes in the measured signal. In this work T2* and T2 weighted Echo Planar Imaging (EPI) schemes based on Gradient Recalled Echo (GRE) and Spin Echo (SE) were evaluated in terms of temporal SNR, percent signal change, contrast to noise ratio (CNR), activation volume, and sensitivity and specificity to gray matter. Datasets were acquired during visual stimulation at in-plane resolutions ranging between 1.5×1.5mm2 and 0.75×0.75mm2 targeting the early visual cortex. While similar activation foci were obtained in all acquisitions, at in-plane resolutions of 1.0×1.0mm2 and larger voxel sizes the T2 weighted contrast of SE-EPI allowed the identification of the activation site with better spatial accuracy. However, at sub-millimetric resolutions the decrease in temporal SNR significantly hampered the sensitivity and the extent of the activation site. On the other hand, high resolution T2* weighted data collected with GRE-EPI provided higher CNR and sensitivity, benefiting from the decreased physiological and partial volume effects. However, spurious activations originating from regions of blood drainage were still present in GRE data, and simple thresholding techniques were found to be inadequate for the removal of such contributions. The combination of 2-class and 3-class automated segmentations, performed directly in EPI space, allowed the selection of active voxels in gray matter. This approach could enable GRE-EPI to accurately map functional activity with satisfactory CNR and specificity to the true site of activation.


Subject(s)
Echo-Planar Imaging/methods , Magnetic Resonance Imaging/methods , Visual Cortex/physiology , Humans , Sensitivity and Specificity , Signal-To-Noise Ratio
8.
Ann Clin Transl Neurol ; 3(5): 314-30, 2016 05.
Article in English | MEDLINE | ID: mdl-27231702

ABSTRACT

OBJECTIVE: PAX6 is a pleiotropic transcription factor essential for the development of several tissues including the eyes, central nervous system, and some endocrine glands. Recently it has also been shown to be important for the maintenance and functioning of corneal and pancreatic tissues in adults. We hypothesized that PAX6 is important for the maintenance of brain integrity in humans, and that adult heterozygotes may have abnormalities of cortical patterning analogous to those found in mouse models. METHODS: We used advanced magnetic resonance imaging techniques, including surface-based morphometry and region-of-interest analysis in adult humans heterozygously mutated for PAX6 mutations (n = 19 subjects and n = 21 controls). Using immunohistochemistry, we also studied PAX6 expression in the adult brain tissue of healthy subjects (n = 4) and patients with epilepsy (n = 42), some of whom had focal injuries due to intracranial electrode track placement (n = 17). RESULTS: There were significant reductions in frontoparietal cortical area after correcting for age and intracranial volume. A greater decline in thickness of the frontoparietal cortex with age, in subjects with PAX6 mutations compared to controls, correlated with age-corrected, accelerated decline in working memory. These results also demonstrate genotypic effects: those subjects with the most severe genotypes have the most widespread differences compared with controls. We also demonstrated significant increases in PAX6-expressing cells in response to acute injury in the adult human brain. INTERPRETATION: These findings suggest a role for PAX6 in the maintenance and consequent functioning of the adult brain, homologous to that found in other tissues. This has significant implications for the understanding and treatment of neurodegenerative diseases.

9.
J Magn Reson Imaging ; 44(4): 1048-55, 2016 10.
Article in English | MEDLINE | ID: mdl-27042956

ABSTRACT

PURPOSE: To predict local and global specific absorption rate (SAR) in individual subjects. MATERIALS AND METHODS: SAR was simulated for a head volume coil for two imaging sequences: axial T1-weighted "zero" time-of-echo (ZTE) sequence, sagittal T2-weighted fluid attenuated inversion recovery (FLAIR). Two head models (one adult, one child) were simulated inside the coil. For 19 adults and 27 children, measured B1 (+) maps were acquired, and global (head) SAR estimated by the system was recorded. We performed t-test between the B1 (+) in models and human subjects. The B1 (+) maps of individual subjects were used to scale the SAR simulated on the models, to predict local and global (head) SAR. A phantom experiment was performed to validate SAR prediction, using a fiberoptic temperature probe to measure the temperature rise due to ZTE scanning. RESULTS: The normalized B1 (+) standard deviation in subjects was not significantly different from that of the models (P > 0.68 and P > 0.54). The rise in temperature generated in the phantom by ZTE was 0.3°C; from the heat equation it followed that the temperature-based measured SAR was 2.74 W/kg, while the predicted value was 3.1 W/kg. CONCLUSION: For ZTE and FLAIR, limits on maximum local and global SAR were met in all subjects, both adults and children. To enhance safety in adults and children with 7.0 Tesla MR systems, we suggest the possibility of using SAR prediction. J. MAGN. RESON. IMAGING 2016;44:1048-1055.


Subject(s)
Absorption, Radiation/physiology , Aging/physiology , Magnetic Resonance Imaging/methods , Models, Biological , Radiation Exposure/analysis , Radiation Exposure/prevention & control , Child , Computer Simulation , Female , Humans , Magnetic Fields , Radiation Dosage , Radiation Protection/methods , Radiometry/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
10.
Brain ; 139(Pt 2): 415-30, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26754787

ABSTRACT

Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery.


Subject(s)
Magnetic Resonance Imaging/methods , Memory/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Temporal Lobe/physiology , Temporal Lobe/surgery , Adult , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Female , Humans , Longitudinal Studies , Male , Middle Aged , Young Adult
11.
Epilepsia ; 57(3): 445-54, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26778405

ABSTRACT

OBJECTIVE: To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. METHODS: We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. RESULTS: 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. SIGNIFICANCE: 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield.


Subject(s)
Epilepsies, Partial/diagnosis , Epilepsies, Partial/physiopathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Child , Electroencephalography/methods , Electroencephalography/standards , Female , Humans , Magnetic Resonance Imaging/standards , Male , Young Adult
12.
Eur Radiol ; 26(6): 1879-88, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26318369

ABSTRACT

OBJECTIVES: This study aimed to assess the performance of a "Silent" zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. METHODS: The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. RESULTS: Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. CONCLUSIONS: The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. KEY POINTS: • "Silent" is an MRI technique allowing zero time of echo acquisition • Its feasibility and performance were assessed on a 7 T MRI system • Image quality in several regions was higher than in conventional techniques • Imaging acoustic noise was dramatically reduced compared with conventional imaging • "Silent" is suitable for T1-weighted head imaging at 7 T.


Subject(s)
Artifacts , Brain/diagnostic imaging , Forecasting , Magnetic Resonance Imaging/methods , Adult , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged , Signal-To-Noise Ratio , Young Adult
13.
Bioelectromagnetics ; 36(5): 358-66, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25808287

ABSTRACT

Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging , Adult , Child , Child, Preschool , Computer Simulation , Female , Head , Humans , Leg , Magnetic Resonance Imaging/instrumentation , Male , Models, Biological
14.
Neurology ; 84(15): 1512-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25770199

ABSTRACT

OBJECTIVE: To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients. METHODS: In this prospective cohort study, 50 patients with temporal lobe epilepsy (23 left) and 26 controls underwent an fMRI memory encoding paradigm of words with a subsequent out-of-scanner recognition assessment. Neuropsychological assessment was performed preoperatively and 4 months after anterior temporal lobe resection, and at equal time intervals in controls. An event-related analysis was used to explore brain activations for words remembered and change in verbal memory scores 4 months after surgery was correlated with preoperative activations. Individual lateralization indices were calculated within a medial temporal and frontal region and compared with other clinical parameters (hippocampal volume, preoperative verbal memory, age at onset of epilepsy, and language lateralization) as a predictor of verbal memory outcome. RESULTS: In left temporal lobe epilepsy patients, left frontal and anterior medial temporal activations correlated significantly with greater verbal memory decline, while bilateral posterior hippocampal activation correlated with less verbal memory decline postoperatively. In a multivariate regression model, left lateralized memory lateralization index (≥0.5) within a medial temporal and frontal mask was the best predictor of verbal memory outcome after surgery in the dominant hemisphere in individual patients. Neither clinical nor functional MRI parameters predicted verbal memory decline after nondominant temporal lobe resection. CONCLUSION: We propose a clinically applicable memory fMRI paradigm to predict postoperative verbal memory decline after surgery in the language-dominant hemisphere in individual patients.


Subject(s)
Anterior Temporal Lobectomy/adverse effects , Cerebral Cortex/physiopathology , Cerebral Cortex/surgery , Epilepsy, Temporal Lobe/surgery , Functional Laterality/physiology , Memory Disorders/physiopathology , Postoperative Complications/physiopathology , Adult , Brain Mapping , Frontal Lobe/physiopathology , Hippocampus/physiopathology , Hippocampus/surgery , Humans , Magnetic Resonance Imaging , Memory Disorders/etiology , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity , Temporal Lobe/physiopathology , Temporal Lobe/surgery
15.
Neurology ; 83(17): 1508-12, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25253743

ABSTRACT

OBJECTIVE: We used functional MRI (fMRI) and a left-lateralizing verbal and a right-lateralizing visual-spatial working memory (WM) paradigm to investigate the effects of levetiracetam (LEV) on cognitive network activations in patients with drug-resistant temporal lobe epilepsy (TLE). METHODS: In a retrospective study, we compared task-related fMRI activations and deactivations in 53 patients with left and 54 patients with right TLE treated with (59) or without (48) LEV. In patients on LEV, activation patterns were correlated with the daily LEV dose. RESULTS: We isolated task- and syndrome-specific effects. Patients on LEV showed normalization of functional network deactivations in the right temporal lobe in right TLE during the right-lateralizing visual-spatial task and in the left temporal lobe in left TLE during the verbal task. In a post hoc analysis, a significant dose-dependent effect was demonstrated in right TLE during the visual-spatial WM task: the lower the LEV dose, the greater the abnormal right hippocampal activation. At a less stringent threshold (p < 0.05, uncorrected for multiple comparisons), a similar dose effect was observed in left TLE during the verbal task: both hippocampi were more abnormally activated in patients with lower doses, but more prominently on the left. CONCLUSIONS: Our findings suggest that LEV is associated with restoration of normal activation patterns. Longitudinal studies are necessary to establish whether the neural patterns translate to drug response. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that in patients with drug-resistant TLE, levetiracetam has a dose-dependent facilitation of deactivation of mesial temporal structures.


Subject(s)
Anticonvulsants/therapeutic use , Brain/drug effects , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Piracetam/analogs & derivatives , Adult , Brain/blood supply , Brain/pathology , Chi-Square Distribution , Female , Humans , Image Processing, Computer-Assisted , Levetiracetam , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Oxygen/blood , Piracetam/therapeutic use , Young Adult
16.
Epilepsia ; 55(10): 1504-11, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25182478

ABSTRACT

OBJECTIVE: Assessment of language dominance using functional magnetic resonance imaging (fMRI) is a standard tool to estimate the risk of language function decline after epilepsy surgery. Although there has been considerable research in the characterization of language networks in bilingual individuals; little is known about the clinical usefulness of language mapping in a secondary language in patients with epilepsy, and how language lateralization assessed by fMRI may differ by the use of native or a secondary language paradigms. In this study we investigate language representation in a population of nonnative English speakers to assess differences in fMRI language lateralization between the first (native) and second language (English). METHODS: Sixteen nonnative English-speaking patients with focal drug-resistant epilepsy underwent language fMRI in their first (native) language (L1) and in English (L2). Differences between language maps using L1 and L2 paradigms were examined at the single subject level by comparing within-subject lateralization indexes obtained for each language. Differences at the group level were examined for each of the tasks and languages. RESULTS: Group maps for the second language (English) showed overlapping areas of activation with the native language, but with larger clusters, and more bilaterally distributed than for the first language. However, at the individual level, lateralization indexes were concordant between the two languages, except for one patient with bilateral hippocampal sclerosis who was left dominant in English and showed bilateral dominance for verb generation and right dominance for verbal fluency in his native tongue. SIGNIFICANCE: Language lateralization can generally be reliably derived from fMRI tasks in a second language provided that the subject can follow the task. Subjects with greater likelihood of atypical language representation should be evaluated more carefully, using more than one language paradigm.


Subject(s)
Brain/physiology , Dominance, Cerebral/physiology , Functional Neuroimaging , Magnetic Resonance Imaging , Multilingualism , Adult , Age Factors , Female , Humans , Language , Male , Middle Aged , Reproducibility of Results , Young Adult
17.
Neurology ; 83(7): 604-11, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25015363

ABSTRACT

OBJECTIVE: We assessed whether display of optic radiation tractography during anterior temporal lobe resection (ATLR) for refractory temporal lobe epilepsy (TLE) can reduce the severity of postoperative visual field deficits (VFD) and increase the proportion of patients who can drive and whether correction for brain shift using intraoperative MRI (iMRI) is beneficial. METHODS: A cohort of 21 patients underwent ATLR in an iMRI suite. Preoperative tractography of the optic radiation was displayed on the navigation and operating microscope displays either without (9 patients) or with (12 patients) correction for brain shift. VFD were quantified using Goldmann perimetry and eligibility to drive was assessed by binocular Esterman perimetry 3 months after surgery. Secondary outcomes included seizure freedom and extent of hippocampal resection. The comparator was a cohort of 44 patients who underwent ATLR without iMRI. RESULTS: The VFD in the contralateral superior quadrant were significantly less (p = 0.043) with iMRI guidance (0%-49.2%, median 14.5%) than without (0%-90.9%, median 24.0%). No patient in the iMRI cohort developed a VFD that precluded driving whereas 13% of the non-iMRI cohort failed to meet UK driving criteria. Outcome did not differ between iMRI guidance with and without brain shift correction. Seizure outcome and degree of hippocampal resection were unchanged. CONCLUSIONS: Display of the optic radiation with image guidance reduces the severity of VFD and did not affect seizure outcome or hippocampal resection. Correction for brain shift is possible but did not further improve outcome. Future work to incorporate tractography into conventional neuronavigation systems will make the work more widely applicable.


Subject(s)
Epilepsy, Temporal Lobe/surgery , Magnetic Resonance Imaging/methods , Neuronavigation/methods , Neurosurgical Procedures/adverse effects , Perceptual Disorders/prevention & control , Temporal Lobe/surgery , Visual Fields , Adolescent , Adult , Aged , Cohort Studies , Epilepsy, Temporal Lobe/pathology , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Seizures/pathology , Seizures/surgery , Temporal Lobe/pathology , Treatment Outcome , Visual Pathways/pathology , Visual Pathways/surgery , Young Adult
18.
Brain ; 137(Pt 9): 2469-79, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25001494

ABSTRACT

Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18-65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22-54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23-46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy.


Subject(s)
Endophenotypes/metabolism , Motor Cortex/metabolism , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/metabolism , Psychomotor Performance/physiology , Siblings , Adolescent , Adult , Aged , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myoclonic Epilepsy, Juvenile/psychology , Neuropsychological Tests , Photic Stimulation/methods , Siblings/psychology , Young Adult
19.
Brain ; 137(Pt 5): 1439-53, 2014 May.
Article in English | MEDLINE | ID: mdl-24691395

ABSTRACT

Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50-80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex.


Subject(s)
Hippocampus/blood supply , Magnetic Resonance Imaging , Memory Disorders/surgery , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Parietal Lobe/blood supply , Adult , Anterior Temporal Lobectomy/methods , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/surgery , Follow-Up Studies , Functional Laterality/physiology , Hippocampus/physiology , Humans , Image Processing, Computer-Assisted , Memory Disorders/etiology , Memory Disorders/pathology , Middle Aged , Neuropsychological Tests , Oxygen/blood , Space Perception , Time Factors , Young Adult
20.
Neuroradiology ; 56(7): 517-23, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24763967

ABSTRACT

INTRODUCTION: This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. METHODS: The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. RESULTS: This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. CONCLUSION: This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation.


Subject(s)
Algorithms , Brain Diseases/pathology , Brain/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...