Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 14(17): 1223-1237, 2022 09.
Article in English | MEDLINE | ID: mdl-35876255

ABSTRACT

Background: The most serious challenge in the treatment of tuberculosis is the multidrug resistance of Mycobacterium tuberculosis to existing antibiotics. As a strategy to overcome resistance we used a multitarget drug design approach. The purpose of the work was to discover dual-targeted inhibitors of mycobacterial LeuRS and MetRS with machine learning. Methods: The artificial neural networks were built using module nnet from R 3.6.1. The inhibitory activity of compounds toward LeuRS and MetRS was investigated in aminoacylation assays. Results: Using a machine-learning approach, we identified dual-targeted inhibitors of LeuRS and MetRS among 2-(quinolin-2-ylsulfanyl)-acetamide derivatives. The most active compound inhibits MetRS and LeuRS with IC50 values of 33 µm and 23.9 µm, respectively. Conclusion: 2-(Quinolin-2-ylsulfanyl)-acetamide scaffold can be useful for further research.


Subject(s)
Amino Acyl-tRNA Synthetases , Mycobacterium tuberculosis , Tuberculosis , Acetamides/therapeutic use , Amino Acyl-tRNA Synthetases/therapeutic use , Humans , Machine Learning , Tuberculosis/drug therapy , Tuberculosis/microbiology
2.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Article in English | MEDLINE | ID: mdl-35440771

ABSTRACT

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Subject(s)
COVID-19 , Staphylococcal Infections , Aminoacyltransferases , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biofilms , Cysteine Endopeptidases , Humans , Microbial Sensitivity Tests , RNA, Viral/pharmacology , SARS-CoV-2 , Staphylococcus aureus
3.
J Enzyme Inhib Med Chem ; 31(sup4): 160-169, 2016.
Article in English | MEDLINE | ID: mdl-27590574

ABSTRACT

In this article, the derivatives of 3-quinoline carboxylic acid were studied as inhibitors of protein kinase CK2. Forty-three new compounds were synthesized. Among them 22 compounds inhibiting CK2 with IC50 in the range from 0.65 to 18.2 µM were identified. The most active inhibitors were found among tetrazolo-quinoline-4-carboxylic acid and 2-aminoquinoline-3-carboxylic acid derivatives.


Subject(s)
Carboxylic Acids/pharmacology , Casein Kinase II/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Casein Kinase II/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...