Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 18(20): 3114-26, 1999 May 20.
Article in English | MEDLINE | ID: mdl-10340383

ABSTRACT

DNA-PK is a nuclear, serine/threonine protein kinase required for repairing DNA double-strand breaks and for V(D)J recombination. To determine the distribution of DNA-PK in human tissues, we assayed paraffin-embedded sections of normal and cancerous tissues for DNA-PKcs and Ku80 by immunohistochemistry. We also assayed for Brca2, a human tumor suppressor gene that is implicated in the repair of DNA strand-breaks. Brca2 was strongly expressed in epithelial cells of the breast, endometrium, and thymus, in tingible body macrophages of follicular germinal centers of lymphoid tissue, and in reticuloendothelial cells in the spleen. DNA-PKcs and Ku80 expression was usually parallel, but both were expressed in a highly cell- and tissue-specific manner. The highest levels were observed in spermatogenic cells (but not in spermatozoa), and in neurons and glial cells of the central and autonomic nervous system. Neither protein was consistently expressed in liver nor in resting mammary epithelium, but lactating breast epithelium was strongly positive for DNA-PKcs and Ku80. In contrast to established human cell cultures, expression between cells in the same tissue was highly selective in the epidermis, exocrine pancreas, renal glomeruli, the red pulp of the spleen, and within cellular compartments of tonsils, lymph nodes, and thymus. Most cancerous tissues were consistently positive for DNA-PKcs and Ku80, except invasive carcinoma of the breast. DNA-PKcs, Ku80, and Ku70 mRNAs were expressed in all normal tissues with relatively little variation in levels. Our results suggest that the apparent absence of DNA-PKcs and Ku80 from some cells or tissues is a consequence of post-transcriptional mechanisms that regulate protein levels.


Subject(s)
DNA-Binding Proteins , Protein Serine-Threonine Kinases/metabolism , Base Sequence , DNA Damage , DNA Primers , DNA Repair , DNA-Activated Protein Kinase , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Immunohistochemistry , Lymphoid Tissue/enzymology , Neoplasm Invasiveness , Nuclear Proteins , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Tumor Cells, Cultured
2.
Nucleic Acids Res ; 22(5): 807-14, 1994 Mar 11.
Article in English | MEDLINE | ID: mdl-8139922

ABSTRACT

A protein--DNA complex containing TFIID has been analyzed by crosslinking. The TBP subunit of TFIID crosslinked to the TATA element but not to any of the regions further downstream which were tested. A 150 kd polypeptide, which corresponds in size to one of the TBP-associated factors (TAFs), crosslinked to a region between +10 and +15 and a second region between +35 and +47. Another polypeptide of greater than 205 kd (also a potential TAF) crosslinked preferentially to the region between +35 and +42. The +10 to +15 region has been recently implicated in hsp70 promoter recognition by TFIID, and the most downstream contacts overlap with the region where RNA polymerase II pauses on the hsp70 promoter in noninduced cells. Crosslinking revealed that as the salt concentration was increased, the TBP interaction was largely unaffected whereas the protein/DNA interactions downstream of the TATA element were disrupted. We propose that during the formation of a transcription complex, TATA-dependent interactions could be disrupted in the vicinity of the start site and the region immediately downstream. A protein contact downstream of +35 might function in pausing polymerase.


Subject(s)
DNA/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Base Sequence , DNA/chemistry , Heat-Shock Proteins/metabolism , Molecular Sequence Data , Precipitin Tests , RNA Polymerase II/metabolism , TATA Box , Transcription Factor TFIID , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL