Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(28): 36752-36762, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968082

ABSTRACT

This study presents a novel approach to fabricating anodic Co-F-WO3 layers via a single-step electrochemical synthesis, utilizing cobalt fluoride as a dopant source in the electrolyte. The proposed in situ doping technique capitalizes on the high electronegativity of fluorine, ensuring the stability of CoF2 throughout the synthesis process. The nanoporous layer formation, resulting from anodic oxide dissolution in the presence of fluoride ions, is expected to facilitate the effective incorporation of cobalt compounds into the film. The research explores the impact of dopant concentration in the electrolyte, conducting a comprehensive characterization of the resulting materials, including morphology, composition, optical, electrochemical, and photoelectrochemical properties. The successful doping of WO3 was confirmed by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence measurements, X-ray photoelectron spectroscopy (XPS), and Mott-Schottky analysis. Optical studies reveal lower absorption in Co-doped materials, with a slight shift in band gap energies. Photoelectrochemical (PEC) analysis demonstrates improved PEC activity for Co-doped layers, with the observed shift in photocurrent onset potential attributed to both cobalt and fluoride ions catalytic effects. The study includes an in-depth discussion of the observed phenomena and their implications for applications in solar water splitting, emphasizing the potential of the anodic Co-F-WO3 layers as efficient photoelectrodes. In addition, the research presents a comprehensive exploration of the electrochemical synthesis and characterization of anodic Co-F-WO3, emphasizing their photocatalytic properties for the oxygen evolution reaction (OER). It was found that Co-doped WO3 materials exhibited higher PEC activity, with a maximum 5-fold enhancement compared to pristine materials. Furthermore, the studies demonstrated that these photoanodes can be effectively reused for PEC water-splitting experiments.

2.
Nanomaterials (Basel) ; 13(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903809

ABSTRACT

Anodic TiO2 nanotubes were transformed into anatase at 400 °C for 2 h in air and subjected to electrochemical reduction at different conditions. It revealed that the reduced black TiOx nanotubes were not stable in contact with air; however, their lifetime was considerably extended to even a few hours when isolated from the influence of atmospheric oxygen. The order of polarization-induced reduction and spontaneous reverse oxidation reactions were determined. Upon irradiation with simulated sunlight, the reduced black TiOx nanotubes generated lower photocurrents than non-reduced TiO2, but a lower rate of electron-hole recombination and better charge separation were observed. In addition, the conduction band edge and energy level (Fermi level), responsible for trapping electrons from the valence band during the reduction of TiO2 nanotubes, were determined. The methods presented in this paper can be used for determination of the spectroelectrochemical and photoelectrochemical properties of electrochromic materials.

3.
Mater Horiz ; 9(11): 2797-2808, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36004811

ABSTRACT

We introduce for the first time a core-shell structure composed of nanostructured self-standing titania nanotubes (TNT, light absorber) filled with Au nanowire (AuNW) array (electrons collector) applied to the photoelectrocatalytic water splitting. Its activity is four times higher than that of reference TNT-Ti obtained with the same anodizing conditions. The composite photoanode brings a distinct photocurrent generation (8 mA cm-2 at 1.65 V vs. RHE), and a high incident photon to current efficiency of 35% obtained under UV light illumination. Moreover, the full system concept of selected constitutional materials, based on Au noble metal and the very stable semiconductor TiO2, ensures a stable performance over a long-time range with no photocurrent loss during 100 on-off cycles of light illumination, after 12 h constant illumination and after one-month storage in air. We provide experimental evidence by photoelectron spectroscopy measurements, confirming that the electronic structure of TNT-AuNW is rectifying for electrons and ohmic for holes, while the electrochemical characterization confirms that the specific architecture of the photoanode supports electron separation due to the presence of a Schottky type contact and fast electron transport through the Au nanowires. Although the composite material shows an unchanged electrochemical band gap, typical for plain TiO2, we find this material to be an innovative platform for efficient photoelectrochemical water splitting under UV light illumination, with significant potential for further modifications, for example extension into the visible light regime.

4.
Molecules ; 27(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897963

ABSTRACT

In this work, we present a systematic study on the influence of Cu2+ ion concentration in the impregnation solution on the morphology, structure, optical, semiconducting, and photoelectrochemical properties of anodic CuOx-TiO2 materials. Studied materials were prepared by immersion in solutions with different concentrations of (CH3COO)2Cu and subjected to air-annealing at 400 °C, 500 °C, or 600 °C for 2 h. The complex characterization of all studied samples was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), reflectance measurements, Mott-Schottky analyses, and photocurrent measurements. It was found that band gap engineering based on coupling CuO with TiO2 (Eg~3.3 eV) is an effective strategy to increase the absorption in visible light due to band gap narrowing (CuOx-TiO2 materials had Eg~2.4 eV). Although the photoactivity of CuO-TiO2 materials decreased in the UV range due to the deposition of CuO on the TiO2 surface, in the Vis range increased up to 600 nm at the same time.

5.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35564255

ABSTRACT

Fe2O3-TiO2 materials were obtained by the cathodic electrochemical deposition of Fe on anodic TiO2 at different deposition times (5-180 s), followed by annealing at 450 °C. The effect of the hematite content on the photoelectrochemical (PEC) activity of the received materials was studied. The synthesized electrodes were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), Mott-Schottky analysis, and PEC measurements. It was shown that the amount of deposited iron (ca. 0.5 at.%-30 at.%) and, consequently, hematite after a final annealing increased with the extension of deposition time and directly affected the semiconducting properties of the hybrid material. It was observed that the flat band potential shifted towards more positive values, facilitating photoelectrochemical water oxidation. In addition, the optical band gap decreased from 3.18 eV to 2.77 eV, which resulted in enhanced PEC visible-light response. Moreover, the Fe2O3-TiO2 electrodes were sensitive to the addition of glucose, which indicates that such materials may be considered as potential PEC sensors for the detection of glucose.

6.
Molecules ; 25(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630395

ABSTRACT

Although anodic tungsten oxide has attracted increasing attention in recent years, there is still a lack of detailed studies on the photoelectrochemical (PEC) properties of such kind of materials grown in different electrolytes under various sets of conditions. In addition, the morphology of photoanode is not a single factor responsible for its PEC performance. Therefore, the attempt was to correlate different anodizing conditions (especially electrolyte composition) with the surface morphology, oxide thickness, semiconducting, and photoelectrochemical properties of anodized oxide layers. As expected, the surface morphology of WO3 depends strongly on anodizing conditions. Annealing of as-synthesized tungsten oxide layers at 500 °C for 2 h leads to obtaining a monoclinic WO3 phase in all cases. From the Mott-Schottky analysis, it has been confirmed that all as prepared anodic oxide samples are n-type semiconductors. Band gap energy values estimated from incident photon-to-current efficiency (IPCE) measurements neither differ significantly for as-synthesized WO3 layers nor depend on anodizing conditions such as electrolyte composition, time and applied potential. Although the estimated band gaps are similar, photoelectrochemical properties are different because of many different reasons, including the layer morphology (homogeneity, porosity, pore size, active surface area), oxide layer thickness, and semiconducting properties of the material, which depend on the electrolyte composition used for anodization.


Subject(s)
Electrochemistry , Electrolytes/chemistry , Nanostructures/chemistry , Oxides/chemistry , Photochemical Processes , Tungsten/chemistry , Electrodes , Semiconductors
7.
Sensors (Basel) ; 19(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731703

ABSTRACT

A simple photoelectrochemical (PEC) sensor based on non-modified nanostructured anodic TiO2 was fabricated and used for a rapid and sensitive detection of glucose. The anodic TiO2 layers were synthesized in an ethylene glycol-based solution containing NH4F (0.38 wt.%) and H2O (1.79 wt.%) via a three-step procedure carried out at the constant voltage of 40 V at 20 °C. At the applied potentials of 0.2, 0.5, and 1 V vs. saturated calomel electrode (SCE), the developed sensor exhibited a photoelectochemical response toward the oxidation of glucose, and two linear ranges in calibration plots were observed. The highest sensitivity of 0.237 µA µmol-1 cm-2 was estimated for the applied bias of 1 V. The lowest limit of detection (LOD) was obtained for the potential of 0.5 V vs. SCE (7.8 mM) with the fastest response at ~3 s. Moreover, the proposed PEC sensor exhibited relatively high sensibility, good reproducibility, and due to its self-cleaning properties, a good long-term stability. Interfering tests showed the selective response of the sensor in the presence of urea and uric acid. Real-life sample analyses were performed using an intravenous glucose solution, which confirmed the possibility of determining the concentration of analyte in such types of samples.


Subject(s)
Biosensing Techniques , Electrochemistry/methods , Glucose/isolation & purification , Glucose/chemistry , Humans , Limit of Detection , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Titanium/chemistry
8.
Int J Pharm ; 533(2): 413-420, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28552800

ABSTRACT

Three dimensional printing technology is gaining in importance because of its increasing availability and wide applications. One of the three dimensional printing techniques is Fused Deposition Modelling (FDM) which works on the basis of hot melt extrusion-well known in the pharmaceutical technology. Combination of fused deposition modelling with preparation of the orodispersible film with poorly water soluble substance such as aripiprazole seems to be extra advantageous in terms of dissolution rate. 3D printed as well as casted films were compared in terms of physicochemical and mechanical properties. Moreover, drug-free films were prepared to evaluate the impact of the extrusion process and aripiprazole presence on the film properties. X-ray diffractometry and thermal analyses confirmed transition of aripiprazole into amorphous state during film preparation using 3D printing technique. Amorphization of the aripiprazole and porous structure of printed film led to increased dissolution rate in comparison to casted films, which, however have slightly better mechanical properties due to their continuous structure. It can be concluded that fused deposition modelling is suitable technique and polyvinyl alcohol is applicable polymer for orodispersible films preparation.


Subject(s)
Antipsychotic Agents/chemistry , Aripiprazole/chemistry , Drug Delivery Systems , Calorimetry, Differential Scanning , Drug Liberation , Models, Theoretical , Polyvinyl Alcohol/chemistry , Printing, Three-Dimensional , X-Ray Diffraction
9.
Int J Pharm ; 533(2): 470-479, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28363855

ABSTRACT

Dissolution of bicalutamide processed with polyvinylpyrrolidone by either supercritical carbon dioxide or ball milling has been investigated. Various compositions as well as process parameters were used to obtain binary systems of the drug with the carrier. Thermal analysis and powder X-ray diffractometry confirmed amorphization of bicalutamide mechanically activated by ball milling and the decrease in crystallinity of the supercritical carbon dioxide-treated drug. Both methods led to reduction of particles size what was confirmed by scanning electron microscopy and laser diffraction measurements. Moreover, the effect of micronisation was found to depend on the parameters of applied process. Fourier transform infrared spectroscopy revealed the appearance of intermolecular interactions between drug and carrier molecules that play an important role in the stabilization of amorphous form of the active compound. Changes in crystal structure combined with reduced size of particles of bicalutamide dispersed within polymer matrix were found to improve dissolution of bicalutamide by 4 to 10-fold in comparison to untreated drug. It is of particular importance as poor dissolution profiles are considered to be the major limitation in bioavailability of the drug.


Subject(s)
Androgen Antagonists/chemistry , Anilides/chemistry , Drug Compounding/methods , Nitriles/chemistry , Tosyl Compounds/chemistry , Calorimetry, Differential Scanning , Drug Liberation , Microscopy, Electron, Scanning , Particle Size , Povidone/chemistry , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
10.
Colloids Surf B Biointerfaces ; 152: 95-102, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28088017

ABSTRACT

Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers.


Subject(s)
Gentamicins/chemistry , Ibuprofen/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Nanopores , Nanotubes/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...