Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(41): 38766-38772, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867726

ABSTRACT

We have assembled 4,8,12-tri-n-octyl-4,8,12-triazatrianguleniumtetrafluoroborate (TATA-BF4) on highly oriented pyrolytic graphite (HOPG) and have studied the structure and tunneling properties of this self-assembled monolayer (SAM) using scanning tunneling microscopy (STM) under ambient conditions. We show that the triazatriangulenium cations TATA+ form hexagonally packed structures driven by the interaction between the aromatic core and the HOPG lattice, as evidenced by density functional theory (DFT) modeling. According to the DFT results, the three alkyl chains of the platform tend to follow the main crystallographic directions of HOPG, leading to a different STM appearance. The STM contrast of the SAM shows that the monolayer is formed by two types of species, namely, TATA+ with BF4- counterions on top and without them. The cationic TATA+ platform gives rise to a seemingly higher appearance than neutral TATA-BF4, in contrast to observations made on metallic substrates. The variation of the STM tunneling parameters does not change the relative difference of contrast, revealing the stability of both species on HOPG. DFT calculations show that TATA-BF4 on HOPG has sufficient binding energy to resist dissociation into TATA+ and BF4-, which might occur under the action of the electric field in the tunneling gap during STM scanning.

2.
Photochem Photobiol Sci ; 19(11): 1511-1516, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33140809

ABSTRACT

Non-photochemical degradation of perfluorinated photochromic diarylethenes (DAE) under Knoevenagel, Sonogashira or Wittig conditions was discovered. This base promoted formation of strongly colored non-photochromic byproducts has an impact in the field of molecular electronics due to the basic conditions often employed during deacylation and desilylation of the protected thiol anchoring groups of functionalized DAE. The products were identified as seven-membered ring systems of the bicyclo[5.3.0]deca-1,7-diene type. Their formation was rationalized by a tentative two-step reaction mechanism.

3.
Chempluschem ; 85(9): 2084-2092, 2020 09.
Article in English | MEDLINE | ID: mdl-32935934

ABSTRACT

Bis(benzothienyl)ethene sulfones are very interesting molecules for super-resolution microscopy due to their photoswitching properties. However, functionalization of the 'classical' bis(benzothienyl)ethene sulfones with a five-membered central ring leads to significant decrease of quantum yields of photoconversion of the fluorescent closed form of the dye to the non-fluorescent open form that limits their application in microscopy. Here, we designed and synthesized diarylethenes with a fluorinated four-membered central ring that adds extra strain to the closed form of the dye. The reaction mechanism of their formation was studied, and byproducts formed upon structural rearrangement of the benzothiophene fragment were characterized. The photochromic properties of the new molecules were investigated by NMR and absorption spectroscopy. Some of these compounds show enhanced tendency to ring opening and have quantum yields of the ring-opening reaction in the range of 0.2-0.5.

4.
Beilstein J Org Chem ; 16: 281-289, 2020.
Article in English | MEDLINE | ID: mdl-32180844

ABSTRACT

Four-component reactions of 3-amino-1,2,4-triazole or 5-amino-1H-pyrazole-4-carbonitrile with aromatic aldehydes and pyruvic acid or its esters under ultrasonication were studied. Unusual for such a reaction type, a cascade of elementary stages led to the formation of 7-azolylaminotetrahydroazolo[1,5-a]pyrimidines.

5.
Angew Chem Int Ed Engl ; 57(38): 12280-12284, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30070009

ABSTRACT

The in situ nanoscopic imaging of soft matter polymer structures is of importance to gain knowledge of the relationship between structure, properties, and functionality on the nanoscopic scale. Cross-linking of polymer chains effects the viscoelastic properties of gels. The correlation of mechanical properties with the distribution and amount of cross-linkers is relevant for applications and for a detailed understanding of polymers on the molecular scale. We introduce a super-resolution fluorescence-microscopy-based method for visualizing and quantifying cross-linker points in polymer systems. A novel diarylethene-based photoswitch with a highly fluorescent closed and a non-fluorescent open form is used as a photoswitchable cross-linker in a polymer network. As an example for its capability to nanoscopically visualize cross-linking, we investigate pNIPAM microgels as a system known with variations in internal cross-linking density.

6.
Small ; 14(10)2018 03.
Article in English | MEDLINE | ID: mdl-29325203

ABSTRACT

Super-resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super-resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super-resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.

7.
Beilstein J Nanotechnol ; 8: 2606-2614, 2017.
Article in English | MEDLINE | ID: mdl-29259875

ABSTRACT

Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments.

8.
J Phys Condens Matter ; 29(29): 294001, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28557794

ABSTRACT

Using scanning tunneling microscopy and spectroscopy we investigate the adsorption properties and ring-closing reaction of a diarylethene derivative (C5F-4Py) on a Ag(1 1 1) surface. We identify an electron-induced reaction mechanism, with a quantum yield varying from 10-14-10-9 per electron upon variation of the bias voltage from 1-2 V. We ascribe the drastic increase in switching efficiency to a resonant enhancement upon tunneling through molecular orbitals. Additionally, we resolve the ring-closing reaction even in the absence of a current passing through the molecule. In this case the electric-field can modify the reaction barrier, leading to a finite switching probability at 4.8 K. A detailed analysis of the switching events shows that a simple plate-capacitor model for the tip-surface junction is insufficient to explain the distance dependence of the switching voltage. Instead, describing the tip as a sphere is in agreement with the findings. We resolve small differences in the adsorption configuration of the closed isomer, when comparing the electron- and field-induced switching product.

9.
ACS Nano ; 10(11): 10555-10562, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27775886

ABSTRACT

Diarylethene molecules are prototype molecular switches with their two isomeric forms exhibiting strikingly different conductance, while maintaining similar length. We employed low-temperature scanning tunneling microscopy (STM) to resolve the energy and the spatial extend of the molecular orbitals of the open and closed isomers when lying on a Au(111) surface. We find an intriguing difference in the extension of the respective HOMOs and a peculiar energy splitting of the formerly degenerate LUMO of the open isomer. We then lift the two isomers with the tip of the STM and measure the current through the individual molecules. By a simple analytical model of the transport, we show that the previously determined orbital characteristics are essential ingredients for the complete understanding of the transport properties. We also succeeded in switching the suspended molecules by the current, while switching the ones which are in direct contact to the surface occurs nonlocally with the help of the electric field of the tip.

10.
Angew Chem Int Ed Engl ; 55(41): 12698-702, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27619176

ABSTRACT

The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of super-resolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit. Here, we report a novel diarylethene-based photoswitch with a highly fluorescent closed and a nonfluorescent open form. Its photophysical properties, switching behavior, and high photostability make the dye an ideal candidate for photoactivation localization microscopy (PALM). It is capable of resolving apolar structures with an accuracy far beyond the diffraction limit of optical light in cylindrical micelles formed by amphiphilic block copolymers.

11.
Beilstein J Nanotechnol ; 7: 1055-67, 2016.
Article in English | MEDLINE | ID: mdl-27547624

ABSTRACT

We report on an experimental study of the charge transport through tunnel gaps formed by adjustable gold electrodes immersed into different solvents that are commonly used in the field of molecular electronics (ethanol, toluene, mesitylene, 1,2,4-trichlorobenzene, isopropanol, toluene/tetrahydrofuran mixtures) for the study of single-molecule contacts of functional molecules. We present measurements of the conductance as a function of gap width, conductance histograms as well as current-voltage characteristics of narrow gaps and discuss them in terms of the Simmons model, which is the standard model for describing transport via tunnel barriers, and the resonant single-level model, often applied to single-molecule junctions. One of our conclusions is that stable junctions may form from solvents as well and that both conductance-distance traces and current-voltage characteristics have to be studied to distinguish between contacts of solvent molecules and of molecules under study.

12.
Beilstein J Org Chem ; 10: 3019-30, 2014.
Article in English | MEDLINE | ID: mdl-25670972

ABSTRACT

The switchable three-component reactions of 5-amino-3-methylisoxazole, salicylaldehyde and N-aryl-3-oxobutanamides under different conditions were studied and discussed. The unexpected influence of the aryl substituent in N-aryl-3-oxobutanamides on the behavior of the reaction was discovered. The key influence of ultrasonication and Lewis acid catalysts led to an established protocol to selectively obtain two or three types of heterocyclic scaffolds depending on the substituent in the N-aryl moiety.

13.
Chem Commun (Camb) ; 48(92): 11355-7, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23073076

ABSTRACT

Several difurylperfluorocyclobutenes showing reversible photochromism were synthesized. In comparison to their cyclopentene homologues they show enhanced quantum yields for ring opening but reduced quantum yields for ring closure. X-ray structure analysis and quantum chemical calculations provide a conclusive explanation for such a behaviour.

14.
Nano Lett ; 12(7): 3736-42, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22734823

ABSTRACT

We report on the experimental analysis of the charge transport through single-molecule junctions of the open and closed isomers of photoswitching molecules. Sulfur-free diarylethene molecules are developed and studied via electrical and optical measurements as well as density functional theory calculations. The single-molecule conductance and the current-voltage characteristics are measured in a mechanically controlled break-junction system at low temperatures. Comparing the results with the single-level transport model, we find an unexpected behavior of the current-dominating molecular orbital upon isomerization. We show that both the side chains and end groups of the molecules are crucial to understand the charge transport mechanism of photoswitching molecular junctions.

15.
Beilstein J Nanotechnol ; 3: 798-808, 2012.
Article in English | MEDLINE | ID: mdl-23365792

ABSTRACT

We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

16.
Phys Rev Lett ; 109(22): 226801, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23368145

ABSTRACT

Azobenzene-derivative molecules change their conformation as a result of a cis-trans transition when exposed to ultraviolet or visible light irradiation and this is expected to induce a significant variation in the conductance of molecular devices. Despite extensive investigations carried out on this type of molecule, a detailed understanding of the charge transport for the two isomers is still lacking. We report a combined experimental and theoretical analysis of electron transport through azobenzene-derivative single-molecule break junctions with Au electrodes. Current-voltage and inelastic electron tunneling spectroscopy (IETS) measurements performed at 4.2 K are interpreted based on first-principles calculations of electron transmission and IETS spectra. This qualitative study unravels the origin of a slightly higher conductance of junctions with the cis isomer and demonstrates that IETS spectra of cis and trans forms show distinct vibrational fingerprints that can be used for identifying the isomer.

17.
Chemistry ; 17(24): 6663-72, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21547965

ABSTRACT

In an attempt to design molecular optoelectronic switches functioning in molecular junctions between two metal tips, we synthesized a set of photochromic compounds by extending the π-system of 1,2-bis-(2-methyl-5-formylfuran-3-yl)perfluorocyclopentene through suitable coupling reactions involving the formyl functions, thereby also introducing terminal groups with a binding capacity to gold. Avoiding the presence of gold-binding sulphur atoms in the photoreactive centre, as they are present in the frequently used analogous thienyl compounds, the newly synthesized compounds should be more suitable for the purpose indicated. The kinetics of reversible photoswitching of the new compounds by UV and visible light was quantitatively investigated in solution. The role of conformational flexibility of the π-system for the width of the UV/Vis spectra was clarified by using quantum chemical calculations with time-dependent (TD)-DFT. As a preliminary test of the potential of the new compounds to serve as optoelectronic molecular switches, monolayer formation and photochemical switching on gold surfaces was observed by using surface plasmon resonance.

SELECTION OF CITATIONS
SEARCH DETAIL
...