Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 42(25): 3963-3973, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32475224

ABSTRACT

The objective of the study was to verify whether the method of determining the efficiency of sewage sludge disintegration, i.e. the disintegration degree (DD), can also be used to assess agro-waste disintegration. The following types of agro waste were tested: remains of fruits, sugar beet pulp and sugar beet pulp in the form of pellets. It was shown that DD as used for sewage sludge can also be a useful tool in assessing the disintegration efficiency of agro waste, although it requires the following modifications: (a) a methodology of chemical hydrolysis for each type of agro waste in order to determine the total amount of soluble COD (SCOD) that can be released from the sample and (b) possible changes in the SCOD value that may occur in the sample left in ambient conditions for a time period corresponding to the duration of the disintegration process. DD of agro waste determined according to the formula adopted for sewage sludge resulted in a considerable overestimation of the value in comparison to the formula proposed by the authors, i.e. DD determined for an energy density of 35 kJ L-1 was higher by 55.9 ± 21.5%, and for an energy density of 140 kJ L-1 it was higher by as much as 73.8 ± 28.1%. Taking into account the differences in the determined disintegration degree values that result from the methodology of conducting the chemical hydrolysis, it is recommended, in order to assess the efficiency of disintegration of agro waste, to use the efficiency of organic compound release.


Subject(s)
Sewage , Waste Disposal, Fluid , Hydrolysis
2.
BMC Microbiol ; 20(1): 222, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709219

ABSTRACT

BACKGROUND: The study aimed to evaluate the influence of the duration times of anaerobic phases on the bacterial biocenosis characterisation while denitrifying dephosphatation in the Integrated Fixed-Film Activated Sludge - Moving-Bed Sequencing Batch Biofilm Reactor (IFAS-MBSBBR). The experiment was conducted in a laboratory model. The study consisted of four series, which differed in terms of the ratio of the anaerobic phases. duration concerning the overall reaction time in the cycle. The anaerobic phases covered from 18 to 30% of the whole cycle duration. During the reactor performance that took 9 months, the influent and effluent were monitored by analysis of COD, TKN, NH4-N, NO2-N, NO3-N, TP, PO4-P, pH, alkalinity and the phosphorus uptake batch tests. Characterisation of the activated sludge and the biofilm biocenosis was based on fluorescent in situ hybridisation (identification of PAO and GAO) and the denaturing gradient gel electrophoresis patterns. RESULTS: The organic compounds removal was high (more than 95.7%) independently of cycle configuration. The best efficiency for nitrogen (91.1%) and phosphorus (98.8%) removal was achieved for the 30% share of the anaerobic phases in the reaction time. Denitrifying PAO (DPAO) covered more than 90% of PAO in the biofilm and usually around 70% of PAO in the activated sludge. A substantial part of the polyphosphate accumulating organisms (PAO) community were Actinobacteria. The denitrifying dephosphatation activity was performed mainly by Accumulibacter phosphatis. CONCLUSIONS: High nutrient removal efficiencies may be obtained in IFAS-MBSBBR using the denitrifying dephosphatation process. It was found that the length of anaerobic phases influenced denitrification and the biological phosphorus removal. The extension of the anaerobic phases duration time in the reaction time caused an increase in the percentage share of denitrifying PAO (DPAO) in PAO. The biocenosis of the biofilm and the activated sludge reveal different species patterns and domination of the EBPR community.


Subject(s)
Actinobacteria/growth & development , Bioreactors/microbiology , Phosphorus/metabolism , Sewage/microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Anaerobiosis , Batch Cell Culture Techniques , Biodegradation, Environmental , Biota , DNA, Bacterial , DNA, Ribosomal/genetics , Denitrification , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...