Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 23(1): 266, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941005

ABSTRACT

BACKGROUND: The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood. METHODS: RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression. RESULTS: In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2. CONCLUSIONS: RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.

2.
Biochem Pharmacol ; 206: 115327, 2022 12.
Article in English | MEDLINE | ID: mdl-36330949

ABSTRACT

Triple-negative breast cancers (TNBCs) are difficult to cure and currently lack of effective treatment strategies. Cancer stem cells (CSCs) are highly associated with the poor clinical outcome of TNBCs. Thoc1 is a core component of the THO complex (THOC) that regulates the elongation, processing and nuclear export of mRNA. The function of thoc1 in TNBC and whether Thoc1 serves as a drug target are poorly understood. In this study, we demonstrated that thoc1 expression is elevated in TNBC cell lines and human TNBC patient tissues. Knockdown of thoc1 decreased cancer stem cell populations, reduced mammosphere formation, impaired THOC function, and downregulated the expression of stemness-related proteins. Moreover, the thoc1-knockdown 4T1 cells showed less lung metastasis in an orthotopic breast cancer mouse model. Overexpression of Thoc1 promoted TNBC malignancy and the mRNA export of stemness-related genes. Furthermore, treatment of TNBC cells with the natural compound andrographolide reduced the expression of Thoc1 expression, impaired homeostasis of THOC, suppressed CSC properties, and delayed tumor growth in a 4T1-implanted orthotopic mouse model. Andrographolide also reduced the activity of NF-κB, an upstream transcriptional regulator of Thoc1. Notably, thoc1 overexpression attenuates andrographolide-suppressed cellular proliferation. Altogether, our results demonstrate that THOC1 promotes cancer stem cell characteristics of TNBC, and andrographolide is a potential natural compound for eliminating CSCs of TNBCs by downregulating the NF-κB-thoc1 axis.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/metabolism , Neoplastic Stem Cells , NF-kappa B/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism
3.
Biochem Pharmacol ; 163: 308-320, 2019 05.
Article in English | MEDLINE | ID: mdl-30822403

ABSTRACT

Chronic myelogenous leukemia (CML) is clinically treated with imatinib, which inhibits the kinase activity of the Bcr-Abl oncoprotein. However, imatinib resistance remains a common clinical issue. Andrographolide, the major compound of the medicinal plant Andrographis paniculata, was reported to exhibit anticancer activity. In this study, we explored the therapeutic potential of andrographolide and its derivative, NCTU-322, against both imatinib-sensitive and imatinib-resistant human CML cell lines. Both andrographolide and NCTU-322 downregulated the Bcr-Abl oncoprotein in imatinib-resistant CML cells through an Hsp90-dependent mechanism similar to that observed in imatinib-sensitive CML cells. In addition, NCTU-322 had stronger effects than andrographolide on downregulation of Bcr-Abl oncoprotein, induction of Hsp90 cleavage and cytotoxicity of CML cells. Notably, andrographolide and NCTU-322 could induce differentiation, mitotic arrest and apoptosis of both imatinib-sensitive and imatinib-resistant CML cells. Finally, the anticancer activity of NCTU-322 against imatinib-resistant CML cells was demonstrated in vivo. In summary, our data demonstrated that andrographolide and NCTU-322 inhibit Bcr-abl function via a mechanism different from that of imatinib, and they induced multiple anticancer effects in both imatinib-sensitive and resistant CML cells. Our findings demonstrate that andrographolide and NCTU-322 are potential therapeutic agents again CML.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genes, abl/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Diterpenes/chemistry , Drug Resistance, Neoplasm , Genes, abl/genetics , Humans , Imatinib Mesylate/pharmacology , Leukocytes, Mononuclear/drug effects , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...