Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108239

ABSTRACT

Osteoarthritis (OA) is a degenerative disease that causes pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for OA treatment. However, the 2D culture of MSCs could potentially affect their characteristics and functionality. In this study, calcium-alginate (Ca-Ag) scaffolds were prepared for human adipose-derived stem cell (hADSC) proliferation with a homemade functionally closed process bioreactor system; the feasibility of cultured hADSC spheres in heterologous stem cell therapy for OA treatment was then evaluated. hADSC spheres were collected from Ca-Ag scaffolds by removing calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation. In this study, 2D-cultured individual hADSCs or hADSC spheres were evaluated for treatment efficacy in a monosodium iodoacetate (MIA)-induced OA rat model. The results of gait analysis and histological sectioning showed that hADSC spheres were more effective at relieving arthritis degeneration. The results of serological and blood element analyses of hADSC-treated rats indicated that the hADSC spheres were a safe treatment in vivo. This study demonstrates that hADSC spheres are a promising treatment for OA and can be applied to other stem cell therapies or regenerative medical treatments.


Subject(s)
Mesenchymal Stem Cells , Osteoarthritis , Rats , Humans , Animals , Calcium/adverse effects , Alginates/adverse effects , Osteoarthritis/chemically induced , Osteoarthritis/therapy , Osteoarthritis/pathology , Adipocytes/pathology , Disease Models, Animal
2.
J Tissue Eng Regen Med ; 16(1): 3-13, 2022 01.
Article in English | MEDLINE | ID: mdl-34644444

ABSTRACT

Current therapy does not provide significant benefits for patients with chronic stroke. Pre-clinical studies suggested that autologous adipose-derived stem cells have benefits for the treatment of chronic stroke. This Phase I open-label study was conducted to demonstrate the safety and efficacy of autologous adipose-derived stem cells (GXNPC1) in chronic stroke. Three patients with chronic stroke were treated with stereotactic implantation of autologous adipose-derived stem cells (1 × 108 cells). The primary endpoints of safety evaluation included adverse events, over a 6 months post-implantation period. The secondary endpoints included improvements in neurological functions. Evolutional change of brain parenchyma was also followed with magnetic resonance imaging (MRI). All three participants improved significantly at 6 months follow-up. The extent of improvement from pre-treatment was: National Institutes of Health Stroke Scale improved 5-15 points, Barthel Index: 25-50 points, Berg balance scale 0-21 points and Fugl-Meyer modified sensation 3-28 points. All three patients had signal change along the implantation tract on MRI one month after surgery. There is no related safety issue through 6 months observation. Clinical measures of neurological symptoms of these patients with chronic stroke improved at 6 months without adverse effects after implantation of autologous adipose-derived stem cells (GXNPC1), which might be correlated with post-implantation changes on brain MRI. Clinical Trial Registration-URL: https://clinicaltrials.gov/ct2/show/NCT02813512?term=ADSC&cond=Stroke&cntry=TW&draw=2&rank=1 Unique identifier: NCT02813512.


Subject(s)
Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Stroke , Adipose Tissue , Humans , Mesenchymal Stem Cell Transplantation/methods , Stroke/therapy , Transplantation, Autologous , Treatment Outcome
3.
RSC Adv ; 10(51): 30289-30296, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35516018

ABSTRACT

In this study, we investigated the effects of adhesive tape structure, adhesive tape thickness (30, 60, and 80 µm), and bonding time (5 and 15 seconds) on the bonding of inflexible and flexible substrates. We performed microchannel bonding by using a manual scraper press or a hot press machine. Rapid prototyping and mass production capabilities were achieved in the dry adhesive tape bonding of polymer microfluidic systems with both the aforementioned approaches. With process control, 95.16% and 99.53% bonding coverage could be achieved for the inflexible and flexible substrates, respectively, by using a manual scraper press. When using a press machine, the bonding coverage could be further enhanced to 99.24% for the inflexible substrates and 99.81% for the flexible substrates. Due to the viscoelastic nature of the adhesive layer in the adhesive tapes, we observed Saffman-Taylor finger and air bubble formation around the microchannel under high pumping pressure. The results indicated that the probability of Saffman-Taylor finger formation was lower and the bonding pressure was higher when using the thinner adhesive tape than when using thicker tape. Moreover, due to their rigidity, the inflexible substrates exhibited a higher bonding strength than the flexible substrates did. Bonding stability tests indicated that the bonded substrates had high bonding quality and bonding strength under long-term storage of up to 60 days.

4.
Cell Transplant ; 28(1_suppl): 100S-111S, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31722556

ABSTRACT

Currently, the only effective therapy for cirrhosis of the liver is liver transplantation. However, finding a compatible liver is difficult due to the low supply of healthy livers and the ever-increasing demand. However, stem-cell therapy may offer a solution for liver cirrhosis; for example, GXHPC1 therapy preparation contains adipose-derived mesenchymal stem cells (AD-MSCs) and was developed for the treatment of liver cirrhosis. In our previous report, animal studies suggested that treatment of a diseased liver via GXHPC1 transplantation can abrogate liver fibrosis and facilitate recovery of liver function. In our current human trial, patients with liver cirrhosis were included. Their adipose tissue was harvested from the subcutaneous fat of the abdominal wall during surgery. AD-MSCs were cultured and suspended at a concentration of 100 million cells in 1 ml of physiological saline (i.e., GXHPC1). This human study passed the Taiwan Food and Drug Administration IND inspection and received Phase I clinical trial permission. The trial was conducted with six patients with liver cirrhosis to demonstrate the safety and efficacy of administering GXHPC1. Intrahepatic injection of GXHPC1 did not cause any safety issues in the analysis of adverse drug reactions and suspected unexpected serious adverse reactions, and showed a tendency for improvement of liver function, METAVIR score, Child-Pugh score, MELD score, and quality of life for patients with liver cirrhosis.


Subject(s)
Adipose Tissue/cytology , Liver Cirrhosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Adipose Tissue/surgery , Adult , Cell Survival , Cells, Cultured , Cytokines/metabolism , Female , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/pathology , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Middle Aged , Quality of Life , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods
5.
Microbiology (Reading) ; 162(10): 1744-1754, 2016 10.
Article in English | MEDLINE | ID: mdl-27519956

ABSTRACT

Bioinformatics analysis was used to search for unknown genes that might influence the phenotypic presentations of enterohaemorrhagic Escherichia coli (EHEC). By so doing and using the known genomic data from EHEC O157 : H7 and K-12, it has been deduced that genes Z4863 to Z4866 of EHEC do not exist in K-12 strains. These four gene sequences have low degrees of homology (18-40 % amino acid identities) to a set of genes in K-12, which have been known to encode fatty acid biosynthesis enzymes. We referred these four consecutive genes as a fasyn cluster and found that deletion of fasyn from EHEC resulted in a defective type-III secretion (T3S). This deletion apparently did not decrease the amounts of the T3S proteins ectopically expressed from plasmids. Examination of the corresponding mRNAs by real-time PCR revealed that the mRNAs readily decreased in the fasyn-deleted mutant and this suppressive effect on the mRNA levels appeared to spread across all lee operons. Complementation with fasyn reverted the T3S-deficient phenotype. Furthermore, this reversion was also seen when the mutant was supplemented with locus of enterocyte effacement activators (Ler or GrlA). Thus, these unique clustering genes located apart from locus of enterocyte effacement on the bacterial chromosome also play a role in affecting T3S of EHEC.


Subject(s)
Chromosomes, Bacterial/genetics , Enterohemorrhagic Escherichia coli/genetics , Type III Secretion Systems/genetics , Chromosomes, Bacterial/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Multigene Family , Protein Transport , Type III Secretion Systems/metabolism
6.
Article in English | MEDLINE | ID: mdl-27570746

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen causing severe diseases in humans worldwide. Currently, there is no specific treatment available for EHEC infection and the use of conventional antibiotics is contraindicated. Therefore, identification of potential therapeutic targets and development of effective measures to control and treat EHEC infection are needed. Lipopolysaccharides (LPS) are surface glycolipids found on the outer membrane of gram-negative bacteria, including EHEC, and LPS biosynthesis has long been considered as potential anti-bacterial target. Here, we demonstrated that the EHEC rfaD gene that functions in the biosynthesis of the LPS inner core is required for the intestinal colonization and pathogenesis of EHEC in vivo. Disruption of the EHEC rfaD confers attenuated toxicity in Caenorhabditis elegans and less bacterial colonization in the intestine of C. elegans and mouse. Moreover, rfaD is also involved in the control of susceptibility of EHEC to antimicrobial peptides and host intestinal immunity. It is worth noting that rfaD mutation did not interfere with the growth kinetics when compared to the wild-type EHEC cells. Taken together, we demonstrated that mutations of the EHEC rfaD confer hypersusceptibility to host intestinal innate immunity in vivo, and suggested that targeting the RfaD or the core LPS synthesis pathway may provide alternative therapeutic regimens for EHEC infection.


Subject(s)
Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Escherichia coli O157/enzymology , Escherichia coli O157/genetics , Intestines/immunology , Lipopolysaccharides/biosynthesis , Sequence Deletion , Actins/immunology , Actins/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Caenorhabditis elegans , Caenorhabditis elegans Proteins/immunology , Caenorhabditis elegans Proteins/metabolism , Carbohydrate Epimerases/immunology , Disease Models, Animal , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Humans , Immunity, Innate , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Intestines/microbiology , Intestines/pathology , Lipopolysaccharides/chemistry , Mice , Mice, Inbred C57BL , Virulence Factors/genetics , Virulence Factors/metabolism , Cathelicidins
7.
PLoS One ; 11(5): e0155578, 2016.
Article in English | MEDLINE | ID: mdl-27182989

ABSTRACT

Enterohaemorrhagic Escherichia coli O157:H7 (EHEC) carries a pathogenic island LEE that is consisted mainly of five polycistronic operons. In the lee3 operon, mpc is the first gene and has been reported to down regulate the type-3 secretion system of EHEC when its gene product is over-expressed. Furthermore, mpc has been suggested to have a regulation function via translation but the mechanism remains unclear. To clarify this hypothesis, we dissected the polycistron and examined the translated products. We conclude that translation of mpc detrimentally governs the translation of the second gene, escV, which in turn affects the translation of the third gene, escN. Then sequentially, escN affects the expression of the downstream genes. Furthermore, we located a critical cis element within the mpc open-reading frame that plays a negative role in the translation-dependent regulation of lee3. Using qRT-PCR, we found that the amount of mpc RNA transcript present in EHEC was relatively limited when compared to any other genes within lee3. Taken together, when the transcription of LEE is activated, expression of mpc is tightly controlled by a restriction of the RNA transcript of mpc, translation of which is then critical for the efficient production of the operon's downstream gene products.


Subject(s)
Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli O157/genetics , Escherichia coli Proteins/metabolism , Gene Order , Genomic Islands , Open Reading Frames , Operon , Plasmids/genetics , Protein Biosynthesis , Regulatory Sequences, Nucleic Acid , Transcription, Genetic
8.
Cell Transplant ; 24(3): 509-20, 2015.
Article in English | MEDLINE | ID: mdl-25654771

ABSTRACT

Adult stem cell therapy for the treatment of tendon injuries is a growing area of research. This study is aimed to investigate the efficacy of human adipose-derived stem cell (hADSC) injection on the tendon during its healing process in a rat model of rotator cuff injury. hADSCs were injected 3 days after collagenase-induced rotator cuff injuries in experimental groups, while the control group received saline as a placebo. Histological and biomechanical analyses were performed 7, 14, 21, and 28 days after collagenase injection. Compared to the control group, it was found that inflammatory cells were significantly decreased in the hADSC-treated group after collagenase injection for 7 and 14 days. In the hADSC-injected group, the fiber arrangement and tendon organization had also been improved. On the seventh day after collagenase injection, the load to failure of the hADSC-injected group (15.87 ± 2.20 N) was notably higher than that of the saline-injected group (11.20 ± 1.35 N). It is suggested that the tensile strength of the supraspinatus tendon was significantly enhanced. Local administration of hADSCs might have the possibility to restore the tensile strength and attenuate the progression of tendinitis. Taken together, these findings demonstrate that the recovery processes in damaged tendons can be facilitated architecturally and functionally after hADSC injection.


Subject(s)
Adipose Tissue/cytology , Rotator Cuff Injuries , Stem Cell Transplantation , Stem Cells/cytology , Tendons/physiology , Animals , Collagenases/metabolism , Disease Models, Animal , Female , Humans , Rats , Rats, Sprague-Dawley , Tendinopathy/etiology , Tendinopathy/therapy , Tendons/pathology , Tensile Strength
9.
Cell Transplant ; 24(3): 533-40, 2015.
Article in English | MEDLINE | ID: mdl-25671337

ABSTRACT

Currently, there is not an effective therapy for cirrhosis of the liver except for liver transplant. However, finding a compatible liver is difficult due to the low supply and increased demand for healthy livers. Stem cell therapy may be a solution for liver cirrhosis. In our previous report, stem cells from Wharton's jelly and bone marrow were shown to improve liver function in a chemically induced liver fibrosis animal model. However, the immunological rejection of an allograft is always a risk for clinical application. In this study proposal, we suggest using human adipose-derived stem cells (ADSCs) because they are an immune-privileged cell type; they lack human leukocyte antigen-DR expression, and they also suppress the proliferation of activated allogenic lymphocytes and inhibit the production of inflammatory cytokines. In addition, ADSCs contain a sufficient amount of adult stem cells for autologous transplantation. Based on these benefits, ADSCs are promising candidates for clinical application when compared to other stem cell types. The aim of our study will be to investigate the safety and efficacy of autologous ADSCs for the clinical treatment of liver cirrhosis.


Subject(s)
Adipose Tissue/cytology , Liver Cirrhosis/therapy , Stem Cell Transplantation , Stem Cells/cytology , Cell- and Tissue-Based Therapy , Cells, Cultured , Clinical Trials as Topic , Humans , Liver Cirrhosis/pathology
10.
PLoS One ; 9(11): e112137, 2014.
Article in English | MEDLINE | ID: mdl-25369259

ABSTRACT

Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity.


Subject(s)
Enterohemorrhagic Escherichia coli/physiology , Escherichia coli Infections/pathology , Host-Pathogen Interactions , Actin Cytoskeleton/metabolism , Elasticity , Escherichia coli Infections/microbiology , Fluorescence Polarization , Focal Adhesions/metabolism , HeLa Cells , Humans , Phalloidine/metabolism
11.
PLoS One ; 9(1): e85354, 2014.
Article in English | MEDLINE | ID: mdl-24454847

ABSTRACT

Infections caused by enterohemorrhagic Escherichia coli (EHEC) can lead to diarrhea with abdominal cramps and sometimes are complicated by severe hemolytic uremic syndrome. EHEC secretes effector proteins into host cells through a type III secretion system that is composed of proteins encoded by a chromosomal island, locus for the enterocyte effacement (LEE). EspA is the major component of the filamentous structure connecting the bacteria and the host's cells. Synthesis and secretion of EspA must be carefully controlled since the protein is prone to polymerize. CesAB, CesA2, and EscL have been identified as being able to interact with EspA. Furthermore, the intracellular level of EspA declines when cesAB, cesA2, and escL are individually deleted. Here, we report a LEE gene named l0033, which also affects the intracellular level of EspA. We renamed l0033 as escA since its counterpart in enteropathogenic E. coli has been recently described. Similar to CesAB, EscL, and CesA2, EscA interacts with EspA and enhances the protein stability of EspA. However, EscA is also able to interact with inner membrane-associated EscL, CesA2, and EscN, but not with cytoplasmic CesAB. In terms of gene organizations, escA locates in LEE3. Expression of EscA is faithfully regulated via Mpc, the first gene product of LEE3. Since Mpc is tightly regulated to low level, we suggest that EscA is highly synchronized and critical to the process of escorting EspA to its final destination.


Subject(s)
Escherichia coli O157/metabolism , Escherichia coli Proteins/metabolism , Protein Interaction Maps , Bacterial Secretion Systems , Chromatography, Affinity , Gene Deletion , Models, Biological , Protein Binding , Protein Stability
12.
Microbes Infect ; 16(2): 161-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24211873

ABSTRACT

Klebsiella pneumoniae is an opportunistic pathogen, which causes a wide range of nosocomial infections. Recently, antibiotic resistance makes K. pneumoniae infection difficult to deal with. Investigation on virulence determinants of K. pneumoniae can provide more information about pathogenesis and unveil new targets for treatment or vaccine development. In this study, SitA, a Fur-regulated divalent cation transporter, was found significantly increased when K. pneumoniae was cultured in a nutrient-limited condition. A sitA-deletion strain (ΔsitA) was created to characterize the importance of SitA in virulence. ΔsitA showed higher sensitivity toward hydroperoxide than its parental strain. In a mouse intraperitoneal infection model, the survival rate of mice infected with ΔsitA strain increased greatly when compared with that of mice infected with the parental strain, suggesting that sitA deletion attenuates the bacterial virulence in vivo. To test whether ΔsitA strain is a potential vaccine candidate, mice were immunized with inactivated bacteria and then challenged with the wild-type strain. The results showed that using ΔsitA mutant protected mice better than using the wild-type strain or the capsule-negative congenic bacteria. In summary, SitA was found being important for the growth of K. pneumoniae in vivo and deleting sitA might be a potential approach to generate vaccines against K. pneumoniae.


Subject(s)
Bacterial Proteins/metabolism , Klebsiella Infections/microbiology , Klebsiella Infections/pathology , Klebsiella pneumoniae/pathogenicity , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Gene Deletion , Klebsiella pneumoniae/genetics , Mice , Mice, Inbred BALB C , Survival Analysis , Virulence Factors/genetics
13.
J Formos Med Assoc ; 112(12): 789-94, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24331109

ABSTRACT

BACKGROUND/PURPOSE: Active efflux is known to play a major role in the resistance of many bacteria to antibiotics. To evaluate the possibility of overcoming resistance by suppressing the efflux, we determined the effect of reserpine, an efflux pump inhibitor. METHODS: Intracellular accumulations and the minimal inhibitory concentrations (MICs) of ciprofloxacin in M. tuberculosis H37Rv and 16 clinical isolates were determined, compared, and analyzed. Nine of the clinical isolates were resistant to isoniazid and rifampin (multiple-drug resistant MDR). Five of these were resistant to ciprofloxacin. RESULTS: A reserpine-inhibited efflux system was identified in the H37Rv control and 10:1 (90.9%) of ciprofloxacin-susceptible and 4:1 (80%) of ciprofloxacin-resistant clinical isolates. The MIC of ciprofloxacin decreased in the presence of reserpine in 3/10 (30%) of the ciprofloxacin-susceptible and 2/4 (50%) of the MDR ciprofloxacin-resistant strains that expressed efflux pumps. Two of the efflux-positive, ciprofloxacin-resistant strains in which the MIC of ciprofloxacin was not decreased by reserpine were found to carry a D94A gyrA mutation. In contrast, two strains with the D94G gyrA mutation were susceptible to ciprofloxacin in the presence of reserpine. An efflux-negative strain, highly resistant to multiple antibiotics, was found to have a novel G247S mutation that differs from known mutations in the QRDR region of the gyrA gene. CONCLUSION: These findings indicate t hat reserpine can increase intracellular concentrations of ciprofloxacin, but is unable to overcome other mechanisms of resistance in clinical isolates.


Subject(s)
Cell Membrane Permeability/drug effects , Drug Resistance, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Adrenergic Uptake Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Ciprofloxacin/pharmacokinetics , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Reserpine/pharmacology
14.
J Biomed Opt ; 17(10): 101503, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23223979

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) is a sensitive technique in monitoring functional and conformational states of nicotinamide adenine dinucleotide reduced (NADH) and flavin adenine dinucleotide (FAD),main compounds participating in oxidative phosphorylation in cells. In this study, we have applied FLIM to characterize the metabolic changes in HeLa cells upon bacterial infection and made comparison with the results from the cells treated with staurosporine (STS), a well-known apoptosis inducer. The evolving of NADH's average autofluorescence lifetime during the 3 h after infection with enterohemorragic Escherichia coli (EHEC) or STS treatment has been observed. The ratio of the short and the long lifetime components' relative contributions of NADH increases with time, a fact indicating cellular metabolic activity, such as a decrease of oxidative phosphorylation over the course of infection, while opposite dynamics is observed in FAD. Being associated with mitochondria, FAD lifetimes and redox ratio could indicate heterogeneous mitochondrial function, microenvironment with bacterial infection, and further pathway to cell death. The redox ratios for both EHEC-infected and STS-treated HeLa cells have been observed and these observations also indicate possible apoptosis induced by bacterial infection.


Subject(s)
Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Microscopy, Fluorescence/methods , Models, Biological , Optical Imaging/methods , Apoptosis , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flow Cytometry , HeLa Cells , Host-Pathogen Interactions , Humans , NAD/chemistry , NAD/metabolism
15.
PLoS One ; 7(11): e48098, 2012.
Article in English | MEDLINE | ID: mdl-23155376

ABSTRACT

On agar surface, bacterial daughter cells form a 4-cell array after the first two rounds of division, and this phenomenon has been previously attributed to a balancing of interactions among the daughter bacteria and the underneath agar. We studied further the organization and development of colony after additional generations. By confocal laser scanning microscopy and real-time imaging, we observed that bacterial cells were able to self-organize and resulted in a near circular micro-colony consisting of monolayer cells. After continuous dividing, bacteria transited from two-dimensional expansion into three-dimensional growth and formed two to multi-layers in the center but retained a monolayer in the outer ring of the circular colony. The transverse width of this outer ring appeared to be approximately constant once the micro-colony reached a certain age. This observation supports the notion that balanced interplays of the forces involved lead to a gross morphology as the bacteria divide into offspring on agar surface. In this case, the result is due to a balance between the expansion force of the dividing bacteria, the non-covalent force among bacterial offspring and that between bacteria and substratum.


Subject(s)
Cell Division/physiology , Escherichia coli/growth & development , Agar , Microscopy, Confocal
16.
Cell Transplant ; 21(12): 2753-64, 2012.
Article in English | MEDLINE | ID: mdl-22776464

ABSTRACT

Adipose-derived stem cells (ADSCs) are easy to harvest and have the ability for self-renewal and to differentiate into various cell types, including those of the hepatic lineage. Studies on the use of ADSCs for liver transplantation are, however, limited. The objective of this study was to investigate the feasibility of using human ADSCs and to better understand their mechanism of action for the repair of liver damage in a thioacetamide (TAA)-induced model of chronic liver damage in the rat. To induce liver damage, 200 mg/kg TAA was injected intraperitoneally into Wistar rats every 3 days for 60 days. For cell therapy, 1 × 10(6) human ADSCs suspended in 300 µl of phosphate-buffered saline were transplanted into each experimental rat by direct liver injection. Immunohistochemistry showed that the transplanted ADSCs differentiated into albumin- and α-fetoprotein-secreting liver-like cells 1 week after transplantation. In addition, liver function recovered significantly, as determined by biochemical analyses that analyzed total bilirubin, prothrombin time, and albumin levels. The Metavir score, derived from histopathological analysis, also showed a significant decrease in liver fibrosis and inflammatory activity after ADSC transplantation. Finally, we found a reduction in the expression of α-smooth muscle actin, a marker of hepatic stellate cells, which produce collagen fiber, and an increase in the expression of matrix metalloproteinase-9, which degrades collagen fiber, after ADSC transplantation. These findings are consistent with abrogation of liver fibrosis in the ADSC therapy group. Consequently, these results suggest that ADSC transplantation may facilitate recovery from chronic liver damage and thus may have clinical applications.


Subject(s)
Adipose Tissue/cytology , Liver Cirrhosis/therapy , Liver/physiology , Stem Cell Transplantation , Stem Cells/cytology , Actins/metabolism , Adult , Aged , Animals , Cells, Cultured , Female , Hepatic Stellate Cells/metabolism , Humans , Immunohistochemistry , Liver Cirrhosis/chemically induced , Male , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Wistar , Recovery of Function , Thioacetamide/toxicity , alpha-Fetoproteins/metabolism
17.
J Antimicrob Chemother ; 67(3): 633-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22127584

ABSTRACT

OBJECTIVES: This study was designed to determine the susceptibility of clinical isolates of multidrug-resistant (MDR) and non-MDR Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and trimethoprim/sulfamethoxazole over a 12 year period in Taiwan. PATIENTS AND METHODS: We examined a total of 117 clinical isolates of M. tuberculosis collected from Southern Taiwan, 116 from 1995 to 2006 and an extensively drug-resistant (XDR) isolate in 2009. These included 28 isolates susceptible to all four first-line agents, 52 MDR isolates and 36 isolates with a mixed combination of drug resistance patterns other than MDR and 1 XDR isolate. RESULTS: Sulfamethoxazole inhibited 80% growth of all 117 isolates regardless of their susceptibility to the first-line agents at an MIC(90) of 9.5 mg/L. The concentration required to inhibit 99% growth was 38 mg/L. There were no significant changes in the MIC(50) or MIC(90) of sulfamethoxazole over a 12 year period. All 117 isolates were resistant to trimethoprim at >8 mg/L. The combination of trimethoprim/sulfamethoxazole at a ratio of 1:19 had no additive or synergistic effects. CONCLUSIONS: Sulfamethoxazole inhibited the growth of clinical isolates of M. tuberculosis at achievable concentrations in plasma after oral administration. Susceptibility to sulfamethoxazole remained constant over a 12 year period. Trimethoprim was inactive against M. tuberculosis and trimethoprim/sulfamethoxazole provided no additional activity. Although the current and prior studies demonstrate that sulfamethoxazole is active against M. tuberculosis the search needs to continue for more active, lipid-soluble sulphonamides that are better absorbed into tissues and have improved therapeutic efficacy.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Sulfamethoxazole/pharmacology , Trimethoprim/pharmacology , Tuberculosis/microbiology , Drug Interactions , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/isolation & purification , Taiwan
18.
J Virol ; 85(13): 6567-78, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21507986

ABSTRACT

We report the genome organization and analysis of the first completely sequenced T4-like phage, AR1, of Escherichia coli O157:H7. Unlike most of the other sequenced phages of O157:H7, which belong to the temperate Podoviridae and Siphoviridae families, AR1 is a T4-like phage known to efficiently infect this pathogenic bacterial strain. The 167,435-bp AR1 genome is currently the largest among all the sequenced E. coli O157:H7 phages. It carries a total of 281 potential open reading frames (ORFs) and 10 putative tRNA genes. Of these, 126 predicted proteins could be classified into six viral orthologous group categories, with at least 18 proteins of the structural protein category having been detected by tandem mass spectrometry. Comparative genomic analysis of AR1 and four other completely sequenced T4-like genomes (RB32, RB69, T4, and JS98) indicated that they share a well-organized and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. The major diverse features between these phages include the modules of distal tail fibers and the types and numbers of internal proteins, tRNA genes, and mobile elements. Codon usage analysis suggested that the presence of AR1-encoded tRNAs may be relevant to the codon usage of structural proteins. Furthermore, protein sequence analysis of AR1 gp37, a potential receptor binding protein, indicated that eight residues in the C terminus are unique to O157:H7 T4-like phages AR1 and PP01. These residues are known to be located in the T4 receptor recognition domain, and they may contribute to specificity for adsorption to the O157:H7 strain.


Subject(s)
Bacteriophage T4/genetics , Bacteriophage T4/physiology , Escherichia coli O157/virology , Genome, Viral/genetics , Amino Acid Sequence , Escherichia coli O157/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Proteomics , RNA, Transfer/genetics , Sequence Analysis, DNA , Viral Proteins/genetics
19.
BMC Microbiol ; 11: 33, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21314918

ABSTRACT

BACKGROUND: BtuB (B twelve uptake) is an outer membrane protein of Escherichia coli. It serves as a receptor for cobalamines uptake or bactericidal toxin entry. A decrease in the production of the BtuB protein would cause E. coli to become resistant to colicins. The production of BtuB has been shown to be regulated at the post-transcriptional level. The secondary structure of 5' untranslated region of btuB mRNA and the intracellular concentration of adenosylcobalamin (Ado-Cbl) would affect the translational efficiency and RNA stability of btuB gene. The transcriptional regulation of btuB expression is still unclear. RESULTS: To determine whether the btuB gene is also transcriptionally controlled by trans-acting factors, a genomic library was screened for clones that enable E. coli to grow in the presence of colicin E7, and a plasmid carrying gadX and gadY genes was isolated. The lacZ reporter gene assay revealed that these two genes decreased the btuB promoter activity by approximately 50%, and the production of the BtuB protein was reduced by approximately 90% in the presence of a plasmid carrying both gadX and gadY genes in E. coli as determined by Western blotting. Results of electrophoretic mobility assay and DNase I footprinting indicated that the GadX protein binds to the 5' untranslated region of the btuB gene. Since gadX and gadY genes are more highly expressed under acidic conditions, the transcriptional level of btuB in cells cultured in pH 7.4 or pH 5.5 medium was examined by quantitative real-time PCR to investigate the effect of GadX. The results showed the transcription of gadX with 1.4-fold increase but the level of btuB was reduced to 57%. CONCLUSIONS: Through biological and biochemical analysis, we have demonstrated the GadX can directly interact with btuB promoter and affect the expression of btuB. In conclusion, this study provides the first evidence that the expression of btuB gene is transcriptionally repressed by the acid responsive genes gadX and gadY.


Subject(s)
AraC Transcription Factor/metabolism , Bacterial Outer Membrane Proteins/biosynthesis , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/biosynthesis , Repressor Proteins/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Artificial Gene Fusion , Blotting, Western , Colicins/metabolism , Colicins/toxicity , DNA Footprinting , DNA, Bacterial/metabolism , Drug Resistance, Bacterial , Electrophoretic Mobility Shift Assay , Genes, Reporter , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic , beta-Galactosidase/analysis , beta-Galactosidase/genetics
20.
J Biomed Sci ; 17: 84, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21059273

ABSTRACT

Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Naphthoquinones/pharmacology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genetic Complementation Test , Microbial Sensitivity Tests , Molecular Sequence Data , Molecular Structure , Mutagenesis, Site-Directed , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Sequence Alignment , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...