Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(21): 12015-20, 2001 Oct 09.
Article in English | MEDLINE | ID: mdl-11593011

ABSTRACT

Designed peptides that fold autonomously to specific conformations in aqueous solution are useful for elucidating protein secondary structural preferences. For example, autonomously folding model systems have been essential for establishing the relationship between alpha-helix length and alpha-helix stability, which would be impossible to probe with alpha-helices embedded in folded proteins. Here, we use designed peptides to examine the effect of strand length on antiparallel beta-sheet stability. alpha-Helices become more stable as they grow longer. Our data show that a two-stranded beta-sheet ("beta-hairpin") becomes more stable when the strands are lengthened from five to seven residues, but that further strand lengthening to nine residues does not lead to further beta-hairpin stabilization for several extension sequences examined. (In one case, all-threonine extension, there may be an additional stabilization on strand lengthening from seven to nine residues.) These results suggest that there may be an intrinsic limit to strand length for most sequences in antiparallel beta-sheet secondary structure.


Subject(s)
Peptides/chemistry , Protein Structure, Secondary , Nuclear Magnetic Resonance, Biomolecular/methods , Oligopeptides/chemistry
2.
J Am Chem Soc ; 123(36): 8667-77, 2001 Sep 12.
Article in English | MEDLINE | ID: mdl-11535071

ABSTRACT

The contributions of interstrand side chain-side chain contacts to beta-sheet stability have been examined with an autonomously folding beta-hairpin model system. RYVEV(D)PGOKILQ-NH2 ((D)P = D-proline, O = ornithine) has previously been shown to adopt a beta-hairpin conformation in aqueous solution, with a two-residue loop at D-Pro-Gly. In the present study, side chains that display interstrand NOEs (Tyr-2, Lys-9, and Leu-11) are mutated to alanine or serine, and the conformational impact of the mutations is assessed. In the beta-hairpin conformation Tyr-2 and Leu-11 are directly across from one another (non-hydrogen bonded pair). This "lateral" juxtaposition of two hydrophobic side chains appears to contribute to beta-hairpin conformational stability, which is consistent with results from other beta-sheet model studies and with statistical analyses of interstrand residue contacts in protein crystal structures. Interaction between the side chains of Tyr-2 and Lys-9 also stabilizes the beta-hairpin conformation. Tyr-2/Lys-9 is a "diagonal" interstrand juxtaposition because these residues are not directly across from one another in terms of the hydrogen bonding registry between the strands. This diagonal interaction arises from the right-handed twist that is commonly observed among beta-sheets. Evidence of diagonal side chain-side chain contacts has been observed in other autonomously folding beta-sheet model systems, but we are not aware of other efforts to determine whether a diagonal interaction contributes to beta-sheet stability.


Subject(s)
Amino Acid Substitution , Peptides/chemistry , Protein Folding , Protein Structure, Secondary , Hydrogen Bonding , Lysine/chemistry , Models, Molecular , Mutation , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...