Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 123(43): 9123-9133, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31584816

ABSTRACT

Covalently circularized nanodiscs using circular membrane scaffold protein (MSP) serve as a suitable membrane mimetic for transmembrane proteins by providing stability and tunability in lipid compositions, providing controllable biological environments for targeted proteins. In this work, monomeric bacteriorhodopsin (mbR) was embedded in lipid nanodiscs of different lipid compositions using negatively charged lipid dioleoyl phosphatidylglycerol (DOPG) and the zwitterion lipid dioleoyl phosphatidylcholine (DOPC), and the events associated with the retinal Schiff base, including the thermal isomerization during the dark adaptation, photoisomerization, and deprotonation, were investigated. The retinal thermal isomerization from all-trans, 15-anti to the 13-cis, 15-syn configuration during the dark adaptation was accelerated in the DOPG bilayer, whereas the processes in the DOPC bilayer and in Triton X-100 micelles were similar. This observation indicated that the negatively charged lipid reduced the barrier for retinal thermal isomerization at C13═C14-C15═N in the ground electronic state. Furthermore, the broader absorption contour of mbR in the DOPC nanodisc probably indicated various retinal isomers in the light-adapted state, consistent with the observed nontwo-state dark adaptation kinetics. Moreover, the kinetics of the photoisomerization of the retinal was slightly decelerated upon increasing the content of DOPC. However, the cascading deprotonation of the protonated Schiff base is not dependent on the types of the surrounding lipids in the nanodiscs. In summary, our research deepens the understanding of the coupling between lipid membrane and the photochemistry of bR retinal Schiff base. Combined with the results of our previous works (Lee, T.-Y.; Yeh, V.; Chuang, J.; Chan, J. C. C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899-1906; Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.; Yu, T.-Y.; Chu, L.-K. J. Phys. Chem. B 2019, 123, 2032-2039), these outcomes extend our understanding of the control of photochemistry and biophysical events for other photosynthetic proteins via altering the lipid environments.


Subject(s)
Bacteriorhodopsins/chemistry , Nanostructures/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Photochemistry , Retinaldehyde/chemistry , Schiff Bases/chemistry , Protons , Stereoisomerism
2.
J Phys Chem B ; 123(9): 2032-2039, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30742764

ABSTRACT

Preparing transmembrane protein in controllable lipid bilayers is essential for unravelling the coupling of the environments and its dynamic functions. Monomerized bacteriorhodopsin (mbR) embedded in covalently circularized nanodiscs was prepared with dimyristoylphosphatidylglycerol (DMPG) lipid and circular membrane scaffold proteins of two different sizes, cE3D1 and cΔ H5, respectively. The retinal photoisomerization kinetics and thermodynamic photocycle were examined by femtosecond and nanosecond transient absorption, respectively, covering the time scale from femtoseconds to hundreds of milliseconds. The kinetics of the retinal isomerization and proton migration from the protonated Schiff base to Asp-85 were not significantly different for monomeric bR solubilized in Triton X-100 or embedded in circularized nanodiscs. This can be ascribed to the local tertiary structures at the retinal pocket vicinity being similar among monomeric bR in various membrane mimicking environments. However, the aforementioned processes are intrinsically different for trimeric bR in purple membrane (PM) and delipidated PM. The reprotonation of the deprotonated Schiff base from Asp-96 in association with the decay of intermediate M, which involved wide-ranged structural alteration, manifested a difference in terms of the oligomeric statuses, as well as a slight dependence on the size of the nanodisc. In summary, bR oligomeric statuses, rather than the environmental factors, such as membrane mimicking systems and nanodisc size, play a significant role in bR photocycle associated with short-range processes, such as the retinal isomerization and deprotonation of protonated Schiff base at the retinal pocket. On the other hand, the environmental factors, such as the types of membrane mimicking systems and the size of nanodiscs, affect those dynamic processes involving wider structural alterations during the photocycle.


Subject(s)
Bacteriorhodopsins/chemistry , Retinaldehyde/chemistry , Bacteriorhodopsins/radiation effects , Halobacterium salinarum/chemistry , Isomerism , Kinetics , Light , Lipid Bilayers/chemistry , Nanostructures/chemistry , Phosphatidylglycerols/chemistry , Photochemistry , Protein Structure, Quaternary , Retinaldehyde/radiation effects , Spectrophotometry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...