Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 13(1): 68, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453886

ABSTRACT

The emergence of van der Waals (vdW) materials resulted in the discovery of their high optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates high in-plane optical anisotropy that is ~20% larger than for rutile and over two times as large as calcite, high refractive index, and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-wave plate that combines classical and the Fabry-Pérot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.

2.
Heliyon ; 10(6): e27538, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509939

ABSTRACT

The plasmonic sensors based on silver nanoparticles are limited in application due to their relatively fast degradation in the ambient atmosphere. The technology of ion-beam modification for the creation of monocrystalline silver nanoparticles (NPs) with stable plasmonic properties will expand the application of silver nanostructures. In the present study, highly-stable monocrystalline NPs were formed on the basis of a thin silver film by low-energy ion irradiation. Combined with lithography, this technique allows the creation of nanoparticle ensembles in variant forms. The characterization of the nanoparticles formed by ion-beam modification showed long-term outstanding for Ag nanoparticles stability of their plasmonic properties due to their monocrystalline structure. According to optical spectroscopy data, the reliable plasmonic properties in the ambient atmosphere are preserved for up to 39 days. The mapping of crystal violet dye via surface-enhanced Raman spectroscopy (SERS) revealed a strong amplification factor sustaining at least thrice as long as the one of similarly sized polycrystalline silver NPs formed by annealing. The plasmonic properties sustain more than a month of storage in the ambient atmosphere. Thus, ion-beam modification of silver film makes it possible to fabricate NPs with stable plasmonic properties and form clusters of NPs for sensor technology and SERS applications.

3.
Opt Lett ; 49(1): 25-28, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38134143

ABSTRACT

The exceptional optical, electrical, and mechanical capabilities of layered transition metal carbides, nitrides, and carbonitrides, called MXenes, revolutionized materials science. Among them, Ti3C2 received the most attention owing to the developed synthesis and processing methods, high conductivity, and pronounced plasmonic response. The latter, however, remains controversial with the open question of whether the peak around 800 nm has plasmonic or interband transition origin. To address this issue, we combine spectroscopic ellipsometry and transmittance results with first-principle computations. Their combination reveals that although Ti3C2 is a metal, its optical response becomes plasmonic (Re ε < 0) above 1415 nm, in contrast to the previous understanding. In addition to fundamental significance, this dual dielectric/plasmonic optical response opens a path for theranostic applications, as we demonstrated on the example of Ti3C2 nanospheres. Thus, our study revisits broadband (300-3300 nm) optical constants of Ti3C2 and broadens its application scope in photonics.

4.
Nanomaterials (Basel) ; 13(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570573

ABSTRACT

The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon-iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use. From structural analyses, it was shown that the formed Si-Fe NPs have a spherical shape and sizes ranging from 5 to 150 nm, with the presence of two characteristic maxima around 20 nm and 90 nm in the size distribution. They are mostly composed of silicon with the presence of a significant iron silicide content and iron oxide inclusions. Our studies also show that the NPs exhibit magnetic properties due to the presence of iron ions in their composition, which makes the formation of contrast in magnetic resonance imaging (MRI) possible, as it is verified by magnetic resonance relaxometry at the proton resonance frequency. In addition, the Si-Fe NPs are characterized by strong optical absorption in the window of relative transparency of bio-tissue (650-950 nm). Benefiting from such absorption, the Si-Fe NPs provide strong photoheating in their aqueous suspensions under continuous wave laser excitation at 808 nm. The NP-induced photoheating is described by a photothermal conversion efficiency of 33-42%, which is approximately 3.0-3.3 times larger than that for pure laser-synthesized Si NPs, and it is explained by the presence of iron silicide in the NP composition. Combining the strong photothermal effect and MRI functionality, the synthesized Si-Fe NPs promise a major advancement of modalities for cancer theranostics, including MRI-guided photothermal therapy and surgery.

5.
Proc Natl Acad Sci U S A ; 119(39): e2208830119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122203

ABSTRACT

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.


Subject(s)
Nanospheres , Precision Medicine , Refractometry , Molybdenum , Nanospheres/therapeutic use , Precision Medicine/instrumentation , Water
6.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014749

ABSTRACT

Layers of germanium (Ge) nanowires (NWs) on titanium foils were grown by metal-assisted electrochemical reduction of germanium oxide in aqueous electrolytes based on germanium oxide without and with addition of sodium silicate. Structural properties and composition of Ge NWs were studied by means of the scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. When sodium silicate was added to the electrolyte, Ge NWs consisted of 1-2 at.% of silicon (Si) and exhibited smaller mean diameter and improved crystallinity. Additionally, samples of Ge NW films were prepared by ultrasonic removal of Ge NWs from titanium foils followed with redeposition on corundum substrates with platinum electrodes. The electrical conductivity of Ge NW films was studied at different temperatures from 25 to 300 °C and an effect of the silicon impurity on the thermally activated electrical conductivity was revealed. Furthermore, the electrical conductivity of Ge NW films on corundum substrates exhibited a strong sensor response on the presence of saturated vapors of different liquids (water, acetone, ethanol, and isopropanol) in air and the response was dependent on the presence of Si impurities in the nanowires. The results obtained indicate the possibility of controlling the structure and electrical properties of Ge NWs by introducing silicate additives during their formation, which is of interest for applications in printed electronics and molecular sensorics.

7.
Materials (Basel) ; 15(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955245

ABSTRACT

Due to particular physico-chemical characteristics and prominent optical properties, nanostructured germanium (Ge) appears as a promising material for biomedical applications, but its use in biological systems has been limited so far due to the difficulty of preparation of Ge nanostructures in a pure, uncontaminated state. Here, we explored the fabrication of Ge nanoparticles (NPs) using methods of pulsed laser ablation in ambient gas (He or He-N2 mixtures) maintained at low residual pressures (1-5 Torr). We show that the ablated material can be deposited on a substrate (silicon wafer in our case) to form a nanostructured thin film, which can then be ground in ethanol by ultrasound to form a stable suspension of Ge NPs. It was found that these formed NPs have a wide size dispersion, with sizes between a few nm and hundreds of nm, while a subsequent centrifugation step renders possible the selection of one or another NP size fraction. Structural characterization of NPs showed that they are composed of aggregations of Ge crystals, covered by an oxide shell. Solutions of the prepared NPs exhibited largely dominating photoluminescence (PL) around 450 nm, attributed to defects in the germanium oxide shell, while a separated fraction of relatively small (5-10 nm) NPs exhibited a red-shifted PL band around 725 nm under 633 nm excitation, which could be attributed to quantum confinement effects. It was also found that the formed NPs exhibit high absorption in the visible and near-IR spectral ranges and can be strongly heated under photoexcitation in the region of relative tissue transparency, which opens access to phototherapy functionality. Combining imaging and therapy functionalities in the biological transparency window, laser-synthesized Ge NPs present a novel promising object for cancer theranostics.

9.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068861

ABSTRACT

In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid-water/silver-are given. The results of this study can be useful in the creation of next-generation solar collectors.

10.
Chemosphere ; 267: 129229, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33333382

ABSTRACT

We report on the structure and properties of novel Sr2Bi2O5/SrCO3 and Sr3Bi2O6/SrCO3 heterostructures with SrCO3 content varying from 10 wt% to 90 wt%. Formation of the heterostructures is succeeded via sintering technique and according to XRD, SEM, and EDX studies has resulted in highly crystalline materials with well-defined carbonate-bismuthate interfaces. In the reaction of photodegradation of phenol in aqueous solution the heterostructures demonstrated photocatalytic activity exceeding that of TiO2. It is demonstrated that their photocatalytic action is due to the presence of type II semiconductor heterojunctions. The content of SrCO3 ensuring utmost photocatalytic activity is explained based on numerical modeling of the heterostructures' formation using 'Unity' development platform. In addition, the heterostructures show photoluminescence. Its mechanism proposed here implies permeability of the materials' heterojunctions to electrons. This work describes new materials that can be used for photodegradation of organic pollutants. Besides, it extends available principles of design of photocatalytically active heterostructures.


Subject(s)
Phenol , Catalysis , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...