Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Biomed Pharmacother ; 173: 116293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430628

ABSTRACT

Pancreatic adenocarcinoma is one of the tumours with the worst prognosis, with a 5-year survival rate of 5-10%. Our aim was to find and optimise peptide-based drug conjugates with daunorubicin (Dau) as the cytotoxic antitumour agent. When conjugated with targeting peptides, the side effect profile and pharmacokinetics of Dau can be improved. The targeting peptide sequences (e.g. GSSEQLYL) we studied were originally selected by phage display. By Ala-scan technique, we identified that position 6 in the parental sequence (Dau=Aoa-LRRY-GSSEQLYL-NH2, ConjA) could be modified without the loss of antitumour activity (Dau=Aoa-LRRY-GSSEQAYL-NH2, Conj03: 14. 9% viability). Our results showed that the incorporation of p-chloro-phenylalanine (Dau=Aoa-LRRY-GSSEQF(pCl)YL-NH2, Conj16) further increased the antitumour potency (10-5 M: 9.7% viability) on pancreatic adenocarcinoma cells (PANC-1). We found that conjugates containing modified GSSEQLYL sequences could be internalised to PANC-1 cells and induce cellular senescence in the short term and subsequent apoptotic cell death. Furthermore, the cardiotoxic effect of Dau was markedly reduced in the form of peptide conjugates. In conclusion, Conj16 had the most effective antitumor activity on PANC-1 cells, which makes this conjugate promising for developing new targeted therapies without cardiotoxic effects.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Pancreatic Neoplasms , Humans , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Adenocarcinoma/drug therapy , Pancreatic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Cell Line, Tumor
2.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35337112

ABSTRACT

Tamoxifen is a long-known anti-tumor drug, which is the gold standard therapy in estrogen receptor (ER) positive breast cancer patients. According to previous studies, the conjugation of the original tamoxifen molecule with different functional groups can significantly improve its antitumor effect. The purpose of this research was to uncover the molecular mechanisms behind the cytotoxicity of different ferrocene-linked tamoxifen derivates. Tamoxifen and its ferrocene-linked derivatives, T5 and T15 were tested in PANC1, MCF7, and MDA-MB-231 cells, where the incorporation of the ferrocene group improved the cytotoxicity on all cell lines. PANC1, MCF7, and MDA-MB-231 express ERα and GPER1 (G-protein coupled ER 1). However, ERß is only expressed by MCF7 and MDA-MB-231 cells. Tamoxifen is a known agonist of GPER1, a receptor that can promote tumor progression. Analysis of the protein expression profile showed that while being cytotoxic, tamoxifen elevated the levels of different tumor growth-promoting factors (e.g., Bcl-XL, Survivin, EGFR, Cathepsins, chemokines). On the other hand, the ferrocene-linked derivates were able to lower these proteins. Further analysis showed that the ferrocene-linked derivatives significantly elevated the cellular oxidative stress compared to tamoxifen treatment. In conclusion, we were able to find two molecules possessing better cytotoxicity compared to their unmodified parent molecule while also being able to counter the negative effects of the presence of the GPER1 through the ER-independent mechanism of oxidative stress induction.

3.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34451917

ABSTRACT

Combination antitumor treatments are essential parts of modern tumor therapy as-compared to monotherapies-(i) they are more effective; (ii) the dose of the compounds can be reduced; and (iii) therefore the side effects are improved. Our research group previously demonstrated the antitumor character of bortezomib (BOZ) in A2058 melanoma cells. Unfortunately, dose-related side effects are common during BOZ therapy, which could be prevented by reducing the dose of BOZ. This study aimed to characterize synergistic combinations of BOZ with a TRAIL (TNF-related apoptosis-inducing ligand) -inducing compound (TIC10), where the doses can be cut down but the efficacy is preserved. Endpoint cell viability assays were performed on A2058 cells, and synergism of BOZ and TIC10 was observed after 72 h. Synergism was further validated in a real-time impedimetric assay, and our results showed that BOZ-treated melanoma cells survived the treatment, an effect not registered in the co-treatments. Treatment with the combinations resulted in increased apoptosis, which was not accompanied by enhanced LDH release. Nevertheless, the expression of death receptor 5 (DR5) was increased on the cell surface without transcriptional regulation. In summary, our findings support the theory that the application of BOZ and TIC10 in combination could provide higher efficacy in vitro.

4.
Molecules ; 25(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244444

ABSTRACT

Use of a Pictet-Spengler reaction of tryptamine and l-tryptophan methyl ester and subsequent reduction of the nitro group followed by further cyclocondensation with aryl aldehydes and formyl-substituted carboxylic acids, including ferrocene-based components, furnished a series of diastereomeric 6-aryl-substituted 5,6,8,9,14,14b-hexahydroindolo[2',3':3,4]pyrido[1-c]-quinazolines and 5,5b,17,18-tetrahydroindolo[2',3':3,4]pyrido[1,2-c]isoindolo[2,1-a]quinazolin-11-(15bH)-ones with the elements of central-, planar and conformational chirality. The relative configuration and the conformations of the novel polycyclic indole derivatives were determined by 1H- and 13C-NMR methods supplemented by comparative DFT analysis of the possible diastereomers. The structure of one of the pentacyclic methyl esters with defined absolute configuration "S" was also confirmed by single crystal X-ray diffraction measurement. Accounting for the characteristic substituent-dependent diastereoselective formation of the products multistep mechanisms were proposed on the basis of the results of DFT modeling. Preliminary in vitro cytotoxic assays of the products revealed moderate-to-significant antiproliferative effects against PANC-1-, COLO-205-, A-2058 and EBC-1 cell lines that proved to be highly dependent on the stereostructure and on the substitution pattern of the pending aryl substituent.


Subject(s)
Carbolines/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbolines/chemical synthesis , Carbolines/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Density Functional Theory , Ferrous Compounds/chemical synthesis , Ferrous Compounds/pharmacology , Humans , Metallocenes/chemical synthesis , Metallocenes/pharmacology , Models, Theoretical , Molecular Conformation , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
5.
Magy Onkol ; 63(4): 301-308, 2019 12 09.
Article in Hungarian | MEDLINE | ID: mdl-31821385

ABSTRACT

Despite the small number of cases, pancreatic cancer is one of the biggest challenges in tumor therapy as its treatment is not yet resolved and the expected 5-year survival rate is only 5%. Therefore, innovative solutions for pancreatic cancer are of great importance. Targeted tumor therapy might provide new possibilities in this field. In our research, we focused on finding peptide-based homing molecules and modified their structure to achieve better targeting properties. We compared several peptides that efficiently recognize receptors that are specific for or overexpressed by pancreatic cancer cells. Their structure-effect relationship was determined that can be useful during drug designing in the future. The antitumor effect of Dau=Aoa-GFLG-K(Dau=Aoa) SKAAKN-OH conjugate, which turned out to be the most efficient one during in vitro studies, were analyzed in vivo in female SCID mice. The obtained 30% inhibition, beside the low toxic side effects, might be a good starting point to develop further, more powerful conjugates.


Subject(s)
Pancreatic Neoplasms , Animals , Antineoplastic Agents , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID , Pancreatic Neoplasms/drug therapy , Peptides , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...