Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 25(12): 6800-7, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19441781

ABSTRACT

Solvation is an important phenomenon, especially in association with heterogeneous phase interactions. Coumarin C522, C(14)H(12)NO(2)F(3), is used as a fluorophore probe to study the interaction between coumarin and a reduced-charge montmorillonite (RCM) surface. Such hydrophilic and hydrophobic interactions are of interest for sorption processes in confined environments. The prepared RCM series with 0.00, 0.12, 0.26, 0.43, 0.66, and 0.97 Li(+) molar fractions provide different surface charges. The aqueous dispersion of the C522/water/RCM system is studied by using steady-state and time-resolved fluorescence spectroscopies. Both the Stokes shift and the dynamics of the solvation process varied as a function of surface charge. Steady-state fluorescence spectroscopy reveals that the C522 Stokes shift varies from 5,115 cm(-1) for the 0.00 Li(+) molar fraction to 3,988 cm(-1) for the 0.97 Li(+) molar fraction. Time-resolved fluorescence spectroscopy determines that the decay time T((1)) varies from 1.0 ps for the 0.00 Li(+) molar fraction to 3.6 ps for the 0.97 Li(+) molar fraction. Within the range of a few picoseconds, the dynamics of the water solvation shell may be described with H-bond rearrangement, modified with the different RCM surface charges. Two models illustrating the interactions between C522 and RCM in water are proposed which qualitatively describe the dynamics. To the best of our knowledge, this experiment is the first measurement of solvation dynamics on a montmorillonite structure surface using ultrafast laser fluorescence spectroscopy.


Subject(s)
Bentonite/chemistry , Coumarins/chemistry , Solubility , Spectrometry, Fluorescence , Water/chemistry
2.
J Chem Phys ; 124(12): 124511, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16599701

ABSTRACT

We study the information content of two-dimensional (2D) electronic photon-echo (PE) spectra, with special emphasis on their potential to distinguish, for waiting times T=0, between different conformations of electronically coupled symmetric dimers. The analysis is performed on the basis of an analytical formula for the frequency-domain 2D PE signal. The symmetric dimers are modeled in terms of two identical, energy-degenerate, excitonically coupled pairs of electronic states in the site representation. The spectra of conformationally weighted ensembles, composed of either two or four dimers, are compared with their one-dimensional linear absorption counterparts. In order to provide a realistic coupling pattern for the ensemble consisting of four dimers, excitonic couplings are estimated on the basis of optimized geometries and site-transition dipole moments, calculated by standard semiempirical methods for the bridged bithiophene structure 1,2-bithiophene-2-yl-ethane-1,2-dion (T2[CO]2). In the framework of our model, the highly readable 2D PE spectra can unambiguously identify spectral doublets, by relating peak heights and positions with mutual orientations of site-localized transition dipoles.

3.
J Chem Phys ; 120(20): 9870-85, 2004 May 22.
Article in English | MEDLINE | ID: mdl-15268004

ABSTRACT

Probing electronic femtosecond (fs) coherence among segmental sites that are congested by static and dynamic site disorder and subject to structural relaxation is a big, experimental challenge in the study of photophysics of poly(p-phenylenevinylene). In this work, fs-wave-packet fluorescence interferometry experiments are presented that measure macroscopic coherent kernels and their phase-relaxation in the low-temperature, bottom-state regime of the density-of-states below the migrational threshold energy where downhill site-to-site transfer is marginal. By using freely propagating and tunable 70 fs excitation/probing pulses and employing narrow-band spectral filtering of wave packets, fluorescence interferograms with strongly damped beatings can be observed. The coherences formally follow the in-phase superpositions of two site-optical free-induction-decays and originate from distinct pairs of coherent doorway-states, different in energy and space, each of them being targeted, by two discrete quantum-arrival-states 1(alpha) and 1(beta), via independent, isoenergetic 0-->1 fluorescence transitions. The coherent transients are explained as site-to-site polarization beatings, caused by the interference of two fluorescence correlation signals. The numerical analysis of the damping regime, based upon second-order perturbational solutions, reveals the lower limit value of homogeneous dephasing in the range from T(2) approximately 100 fs to T(2) approximately 200 fs depending on the site-excitation energy of the bottom-states. The experiments enable to look into the formation of the relaxed state as a special molecular process of electron-phonon coupling and hence open-up a quite new perspective in the puzzle of multichromophore optical dynamics and structural relaxation in conjugated polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...