Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(3): e10940, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516570

ABSTRACT

Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the S-locus. Disruptions of genes within the S-locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of Primula vulgaris and leveraging high-quality reference genomes of Primula we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on S-genes. Our results reveal a previously undetected structural rearrangement in CYPᵀ associated with the shift to homostyly and confirm previously reported, homostyle-specific, loss-of-function mutations in the exons of the S-gene CYPᵀ. We also discovered that the promoter and intronic regions of CYPᵀ in distylous and homostylous individuals are conserved, suggesting that down-regulation of CYPᵀ via mutations in its promoter and intronic regions is not a cause of the shift to homostyly. Furthermore, we found that hemizygosity is associated with reduced genetic diversity in S-genes compared with their paralogs outside the S-locus. Additionally, the shift to homostyly lowers genetic diversity in both the S-genes and their paralogs, as expected in primarily selfing plants. Finally, we tested, for the first time, long-standing theoretical models of changes in S-locus genotypes during early stages of the transition to homostyly, supporting the assumption that two copies of the S-locus might reduce homostyle fitness.

2.
Mol Phylogenet Evol ; 104: 60-72, 2016 11.
Article in English | MEDLINE | ID: mdl-27502126

ABSTRACT

Species-rich evolutionary radiations are a common feature of mountain floras worldwide. However, the frequent lack of phylogenetic resolution in species-rich alpine plant groups hampers progress towards clarifying the causes of diversification in mountains. In this study, we use the largest plant group endemic to the European Alpine system, Primula sect. Auricula, as a model system. We employ a newly developed next-generation-sequencing protocol, involving sequence capture with RAD probes, and map reads to the reference genome of Primula veris to obtain DNA matrices with thousands of SNPs. We use these data-rich matrices to infer phylogenetic relationships in Primula sect. Auricula and examine species delimitations in two taxonomically difficult subgroups: the clades formed by the close relatives of P. auricula and P. pedemontana, respectively. Our molecular dataset enables us to resolve most phylogenetic relationships in the group with strong support, and in particular to infer four well-supported clades within sect. Auricula. Our results support existing species delimitations for P. auricula, P. lutea, and P. subpyrenaica, while they suggest that the group formed by P. pedemontana and close relatives might need taxonomic revision. Finally, we discuss preliminary implications of these findings on the biogeographic history of Primula sect. Auricula.


Subject(s)
Primula/classification , Biological Evolution , DNA, Plant/chemistry , DNA, Plant/isolation & purification , DNA, Plant/metabolism , High-Throughput Nucleotide Sequencing , Likelihood Functions , Phylogeny , Polymorphism, Single Nucleotide , Primula/genetics , Sequence Alignment , Sequence Analysis, DNA
3.
Mol Ecol ; 20(15): 3202-18, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21722226

ABSTRACT

Polyploidization is thought to result in instant sympatric speciation, but several cases of hybrid zones between one of the parental species and its polyploid derivative have been documented. Previous work showed that diploid Sphagnum lescurii is an allopolyploid derived from the haploids S. lescurii (maternal progenitor) and S. subsecundum (paternal progenitor). Here, we report the results from analyses of a population where allodiploid and haploid S. lescurii co-occur and produce sporophytes. We tested (i) whether haploids and diploids form hybrid triploid sporophytes; (ii) how hybrid and nonhybrid sporophytes compare in fitness; (iii) whether hybrid sporophytes form viable spores; (iv) the ploidy of any viable gametophyte offspring from hybrid sporophytes; (v) the relative viability of sporelings derived from hybrid and nonhybrid sporophytes; and (vi) if interploidal hybridization results in introgression between the allopolyploid and its haploid progenitor. We found that triploid hybrid sporophytes do occur and are larger than nonhybrid sporophytes, but exhibit very low germination percentages and produce sporelings that develop more slowly than those from nonhybrid sporophytes. All sporophytes attached to haploid gametophytes were triploid and were sired by diploid males, but all sporophytes attached to diploid gametophytes were tetraploid. This asymmetric pattern of interploidal hybridization is related to an absence of haploid male gametophytes in the population. Surprisingly, all sporelings from triploid sporophytes were triploid, yet were genetically variable, suggesting some form of aberrant meiosis that warrants further study. There was limited (but some) evidence of introgression between allodiploid and haploid S. lescurii.


Subject(s)
Germ Cells, Plant/physiology , Hybridization, Genetic , Reproductive Isolation , Sphagnopsida/genetics , DNA, Plant/genetics , Genetic Fitness , Genetics, Population , Genome, Plant , Linkage Disequilibrium , Microsatellite Repeats , Ploidies , Reproduction/genetics , Sphagnopsida/physiology
4.
Heredity (Edinb) ; 103(5): 394-403, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19623211

ABSTRACT

Multiple paternity (polyandry) frequently occurs in flowering plants and animals and is assumed to have an important function in the evolution of reproductive traits. Polyandry in bryophytes may occur among multiple sporophytes of a female gametophyte; however, its occurrence and extent is unknown. In this study we investigate the occurrence and extent of multiple paternity, spatial genetic structure, and sporophytic inbreeding depression in natural populations of a dioicous bryophyte species, Sphagnum lescurii, using microsatellite markers. Multiple paternity is prevalent among sporophytes of a female gametophyte and male genotypes exhibit significant skew in paternity. Despite significant spatial genetic structure in the population, suggesting frequent inbreeding, the number of inbred and outbred sporophytes was balanced, resulting in an average fixation coefficient and population level selfing rate of zero. In line with the prediction of sporophytic inbreeding depression sporophyte size was significantly correlated with the level of heterozygosity. Furthermore, female gametophytes preferentially supported sporophytes with higher heterozygosity. These results indicate that polyandry provides the opportunity for postfertilization selection in bryophytes having short fertilization distances and spatially structured populations facilitating inbreeding. Preferential maternal support of the more heterozygous sporophytes suggests active inbreeding avoidance that may have significant implications for mating system evolution in bryophytes.


Subject(s)
Bryophyta/genetics , Bryophyta/physiology , Fertilization/physiology , Inbreeding , Pollen/physiology , Fertilization/genetics , Genes, Plant , Genetic Variation/physiology , Genetics, Population , Ovule/genetics , Ovule/physiology , Pollen/genetics , Species Specificity
5.
Mol Phylogenet Evol ; 53(1): 277-86, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19539771

ABSTRACT

In organisms with haploid-dominant life cycles, natural selection is expected to be especially effective because genetic variation is exposed directly to selection. However, in spore-producing plants with high dispersal abilities, among-population migration may counteract local adaptation by continuously redistributing genetic variability. In this study, we tested for adaptation at the molecular level by comparing nucleotide polymorphism in two genes (GapC and Rpb2) in 10 European populations of the peatmoss species, Sphagnum fimbriatum with variability at nine microsatellite loci assumed to be selectively neutral. In line with previous results, the GapC and Rpb2 genes showed strikingly different patterns of nucleotide polymorphism. Neutrality tests and comparison of population differentiation based on the GapC and Rpb2 genes with neutrally evolving microsatellites using coalescent simulations supported non-neutral evolution in GapC, but neutral evolution in the Rpb2 gene. These observations and the positions of the replacement mutations in the GAPDH enzyme (coded by GapC) indicate a significant impact of replacement mutations on enzyme function. Furthermore, the geographic distribution of alternate GapC alleles and/or linked genomic regions suggests that they have had differential success in the recolonization of Europe following the Last Glacial Maximum.


Subject(s)
Evolution, Molecular , Genetics, Population , Polymorphism, Single Nucleotide , Sphagnopsida/genetics , DNA Mutational Analysis , DNA, Plant/genetics , Europe , Genes, Plant , Microsatellite Repeats , Phylogeny , Recombination, Genetic , Sphagnopsida/classification
6.
Mol Phylogenet Evol ; 49(1): 304-17, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18634892

ABSTRACT

Allopolyploidy is probably the most extensively studied mode of plant speciation and allopolyploid species appear to be common in the mosses (Bryophyta). The Sphagnum subsecundum complex includes species known to be gametophytically haploid or diploid, and it has been proposed that the diploids (i.e., with tetraploid sporophytes) are allopolyploids. Nucleotide sequence and microsatellite variation among haploids and diploids from Newfoundland and Scandinavia indicate that (1) the diploids exhibit fixed or nearly fixed heterozygosity at the majority of loci sampled, and are clearly allopolyploids, (2) diploids originated independently in North America and Europe, (3) the European diploids appear to have the haploid species, S. subsecundum, as the maternal parent based on shared chloroplast DNA haplotypes, (4) the North American diploids do not have the chloroplast DNA of any sampled haploid, (5) both North American and European diploids share nucleotide and microsatellite similarities with S. subsecundum, (6) the diploids harbor more nucleotide and microsatellite diversity than the haploids, and (7) diploids exhibit higher levels of linkage disequilibrium among microsatellite loci. An experiment demonstrates significant artifactual recombination between interspecific DNAs coamplified by PCR, which may be a complicating factor in the interpretation of sequence-based analyses of allopolyploids.


Subject(s)
Evolution, Molecular , Genetic Speciation , Sphagnopsida/classification , Sphagnopsida/genetics , Bayes Theorem , DNA, Chloroplast/genetics , DNA, Plant/genetics , Diploidy , Europe , Genetics, Population , Haploidy , Haplotypes , Heterozygote , Likelihood Functions , Microsatellite Repeats , North America , Phylogeny , Polymorphism, Genetic , Polyploidy , Principal Component Analysis , Sequence Alignment , Sequence Analysis, DNA
7.
Mol Ecol ; 17(24): 5364-77, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19121003

ABSTRACT

Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.


Subject(s)
Genetics, Population , Phylogeny , Polymorphism, Genetic , Sphagnopsida/genetics , Alleles , Europe , Evolution, Molecular , Gene Flow , Genetic Markers , Genetic Speciation , Microsatellite Repeats , Models, Genetic , Mutation , North America , Sphagnopsida/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...