Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(2): e0212754, 2019.
Article in English | MEDLINE | ID: mdl-30818389

ABSTRACT

Human listeners can focus on one speech stream out of several concurrent ones. The present study aimed to assess the whole-brain functional networks underlying a) the process of focusing attention on a single speech stream vs. dividing attention between two streams and 2) speech processing on different time-scales and depth. Two spoken narratives were presented simultaneously while listeners were instructed to a) track and memorize the contents of a speech stream and b) detect the presence of numerals or syntactic violations in the same ("focused attended condition") or in the parallel stream ("divided attended condition"). Speech content tracking was found to be associated with stronger connectivity in lower frequency bands (delta band- 0,5-4 Hz), whereas the detection tasks were linked with networks operating in the faster alpha (8-10 Hz) and beta (13-30 Hz) bands. These results suggest that the oscillation frequencies of the dominant brain networks during speech processing may be related to the duration of the time window within which information is integrated. We also found that focusing attention on a single speaker compared to dividing attention between two concurrent speakers was predominantly associated with connections involving the frontal cortices in the delta (0.5-4 Hz), alpha (8-10 Hz), and beta bands (13-30 Hz), whereas dividing attention between two parallel speech streams was linked with stronger connectivity involving the parietal cortices in the delta and beta frequency bands. Overall, connections strengthened by focused attention may reflect control over information selection, whereas connections strengthened by divided attention may reflect the need for maintaining two streams in parallel and the related control processes necessary for performing the tasks.


Subject(s)
Attention/physiology , Multitasking Behavior/physiology , Nerve Net/physiology , Speech Perception/physiology , Acoustic Stimulation , Auditory Cortex/physiology , Electroencephalography , Female , Frontal Lobe/physiology , Healthy Volunteers , Humans , Male , Parietal Lobe/physiology , Young Adult
2.
Cogn Affect Behav Neurosci ; 18(5): 932-948, 2018 10.
Article in English | MEDLINE | ID: mdl-29949114

ABSTRACT

The notion of automatic syntactic analysis received support from some event-related potential (ERP) studies. However, none of these studies tested syntax processing in the presence of a concurrent speech stream. Here we present two concurrent continuous speech streams, manipulating two variables potentially affecting speech processing in a fully crossed design: attention (focused vs. divided) and task (lexical - detecting numerals vs. syntactical - detecting syntactic violations). ERPs elicited by syntactic violations and numerals as targets were compared with those for distractors (task-relevant events in the unattended speech stream) and attended and unattended task-irrelevant events. As was expected, only target numerals elicited the N2b and P3 components. The amplitudes of these components did not significantly differ between focused and divided attention. Both task-relevant and task-irrelevant syntactic violations elicited the N400 ERP component within the attended but not in the unattended speech stream. P600 was only elicited by target syntactic violations. These results provide no support for the notion of automatic syntactic analysis. Rather, it appears that task-relevance is a prerequisite of P600 elicitation, implying that in-depth syntactic analysis occurs only for attended speech under everyday listening situations.


Subject(s)
Attention/physiology , Brain/physiology , Linguistics , Speech Perception/physiology , Electroencephalography , Evoked Potentials , Female , Humans , Male , Multitasking Behavior/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...