Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Psychiatry ; 29(2): 342-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102481

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders mainly characterized by deficient sociability and repetitive behaviors. Effective treatment for the core symptoms of ASD is still lacking. Behavioral interventions show limited effectiveness, while pharmacotherapy focuses on the amelioration of secondary symptomatology. Oxytocin (OXT) is a neuropeptide known for its prosocial impact, making it a candidate drug for ASD treatment. Its alleviating effect has been and still is widely researched, but outcomes reported by clinical studies are ambiguous. We examined the effect of daily intranasal OXT (0.8 IU/kg) administration for 4 weeks on the ASD-like phenotype in Shank3-/- adult mice. Animals treated with OXT spent twice as much time interacting with the social partner as early as after 2 weeks of treatment. Furthermore, OXT-treated mice exhibited reduced explorative behavior by 50%, after 4 weeks of treatment, and a 30% reduction in repetitive behavior, 4 weeks after treatment termination. One-fold higher sociability and 30% reduced exploration due to OXT lasted up to 4 weeks following the treatment termination. However, social disinterest was elevated by roughly 10% as well, indicating a form of social ambivalence. Obtained results support the therapeutic potential of intranasally administered OXT in alleviating social shortfalls in a genetic model of ASD. Subsequent research is necessary to elucidate the benefits and risks of the long-term OXT administration, as well as its applicability in other ASD models and the potential treatment effect on social communication, which was not measured in the present study.


Subject(s)
Administration, Intranasal , Autism Spectrum Disorder , Disease Models, Animal , Mice, Knockout , Oxytocin , Social Behavior , Animals , Oxytocin/administration & dosage , Oxytocin/pharmacology , Administration, Intranasal/methods , Mice , Male , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Nerve Tissue Proteins/genetics , Autistic Disorder/genetics , Autistic Disorder/drug therapy , Exploratory Behavior/drug effects , Microfilament Proteins/genetics , Behavior, Animal/drug effects , Mice, Inbred C57BL
2.
Brain Sci ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35884680

ABSTRACT

Although autism spectrum disorder (ASD) is mainly characterized by developmental delay in social and communication skills, it has been shown that neuromotor deficits are an early component of ASD. The neuromotor development of B6.129-Shank3tm2Gfng/J (Shank3B−/−) mice as an animal model of autism has not been analyzed yet. The aim of this study was to compare the early neuromotor development of Shank3B−/− to wild-type mice. The mice underwent a multitude of neurodevelopmental tests and observations from postnatal day 1 (PND = 1) to weaning. Shank3B−/− mice opened their eyes later than their wild-type litter mates (p < 0.01). Shank3B−/− mice were also slower in the negative geotaxis test from PND = 13 to PND = 16 (p < 0.001) in both sexes. The results of this study indicate neurodevelopmental deficits in Shank3B−/− mice. The test is partially dependent on truncal motor control, and these lines of evidence suggest a phenotype of developmental hypotonia, which corresponds with the phenotypes seen in patients with Phelan-McDermid Syndrome. There was no observable effect of sex in any of the tests. There were no observed differences in upper and lower incisor eruption, ear unfolding, air righting, surface righting and ear twitch reflexes. Further studies should prove whether the delay in neuromotor development is linked to social or communication deficits, and thus, whether it may serve as an early indicator of autistic-like phenotype in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...