Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953442

ABSTRACT

We explore the large-scale behavior of a stochastic model for nanoparticle growth in an unusual parameter regime. This model encompasses two types of reactions: nucleation, where n monomers aggregate to form a nanoparticle, and growth, where a nanoparticle increases its size by consuming a monomer. Reverse reactions are disregarded. We delve into a previously unexplored parameter regime. Specifically, we consider a scenario where the growth rate of the first newly formed particle is of the same order of magnitude as the nucleation rate, in contrast to the classical scenario where, in the initial stage, nucleation dominates over growth. In this regime, we investigate the final size distribution as the initial number of monomers tends to infinity through extensive simulation studies utilizing state-of-the-art stochastic simulation methods with an efficient implementation and supported by high-performance computing infrastructure. We observe the emergence of a deterministic limit for the particle's final size density. To scale up the initial number of monomers to approximate the magnitudes encountered in real experiments, we introduce a novel approximation process aimed at faster simulation. Remarkably, this approximating process yields a final size distribution that becomes very close to that of the original process when the available monomers approach infinity. Simulations of the approximating process further support the conjecture of the emergence of a deterministic limit.

2.
Sci Rep ; 12(1): 10498, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732634

ABSTRACT

From sport and science production to everyday life, higher-level pursuits demand collaboration. Despite an increase in the number of data-driven studies on human behavior, the social dynamics of collaborative problem solving are still largely unexplored with network science and other computational and quantitative tools. Here we introduce escape rooms as a non-interventional and minimally biased social laboratory, which allows us to capture at a high resolution real-time communications in small project teams. Our analysis portrays a nuanced picture of different dimensions of social dynamics. We reveal how socio-demographic characteristics impact problem solving and the importance of prior relationships for enhanced interactions. We extract key conversation rules from motif analysis and discuss turn-usurping gendered behavior, a phenomenon particularly strong in male-dominated teams. We investigate the temporal evolution of signed and group interactions, finding that a minimum level of tense communication might be beneficial for collective problem solving, and revealing differences in the behavior of successful and failed teams. Our work unveils the innovative potential of escape rooms to study teams in their complexity, contributing to a deeper understanding of the micro-dynamics of collaborative team processes.


Subject(s)
Group Processes , Sports , Communication , Cooperative Behavior , Humans , Male , Problem Solving
SELECTION OF CITATIONS
SEARCH DETAIL
...