Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 845953, 2022.
Article in English | MEDLINE | ID: mdl-35392081

ABSTRACT

Components of the extracellular matrix (ECM), when exposed to body fluids may promote local complement activation and inflammation. Pathologic complement activation at the glomerular basement membrane and at the Bruch's membrane is implicated in renal and eye diseases, respectively. Binding of soluble complement inhibitors to the ECM, including factor H (FH), is important to prevent excessive complement activation. Since the FH-related (FHR) proteins FHR1 and FHR5 are also implicated in these diseases, our aim was to study whether these FHRs can also bind to ECM components and affect local FH activity and complement activation. Both FH and the FHRs showed variable binding to ECM components. We identified laminin, fibromodulin, osteoadherin and PRELP as ligands of FHR1 and FHR5, and found that FHR1 bound to these ECM components through its C-terminal complement control protein (CCP) domains 4-5, whereas FHR5 bound via its middle region, CCPs 3-7. Aggrecan, biglycan and decorin did not bind FH, FHR1 and FHR5. FHR5 also bound to immobilized C3b, a model of surface-deposited C3b, via CCPs 3-7. By contrast, soluble C3, C3(H2O), and the C3 fragments C3b, iC3b and C3d bound to CCPs 8-9 of FHR5. Properdin, which was previously described to bind via CCPs 1-2 to FHR5, did not bind in its physiologically occurring serum forms in our assays. FHR1 and FHR5 inhibited the binding of FH to the identified ECM proteins in a dose-dependent manner, which resulted in reduced FH cofactor activity. Moreover, both FHR1 and FHR5 enhanced alternative complement pathway activation on immobilized ECM proteins when exposed to human serum, resulting in the increased deposition of C3-fragments, factor B and C5b-9. Thus, our results identify novel ECM ligands of FH family proteins and indicate that FHR1 and FHR5 are competitive inhibitors of FH on ECM and, when bound to these ligands, they may enhance local complement activation and promote inflammation under pathological conditions.


Subject(s)
Complement Activation , Complement C3b Inactivator Proteins , Complement Factor H , Complement System Proteins , Complement C3b Inactivator Proteins/metabolism , Complement System Proteins/metabolism , Extracellular Matrix , Humans , Inflammation , Ligands
2.
Integr Environ Assess Manag ; 18(6): 1513-1529, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35075774

ABSTRACT

Managed aquifer recharge (MAR) refers to a suite of methods that is increasingly being applied worldwide for sustainable groundwater management to tackle drinking or irrigation water shortage or to restore and maintain groundwater ecosystems. The potential for MAR is far from being exhausted, not only due to geological and hydrogeological conditions or technical and economic feasibility but also due to its lack of acceptance by the public and policymakers. One approach to enable the safe and accepted use of MAR could be to provide comprehensive risk management, including the identification, analysis, and evaluation of potential risks related to MAR. This article reviews current MAR risk assessment methodologies and guidelines and summarizes possible hazards and related processes. It may help planners and operators select the appropriate MAR risk assessment approaches and support the risk identification process. In addition to risk assessment (and subsequent risk treatment) related to the MAR implementation phase, this review also addresses risk assessment for MAR operation. We also highlight the limitations and lessons learned from the application and development of risk assessment methodologies. Moreover, developments are recommended in the area of MAR-related risk assessment methodologies and regulation. Depending on data availability, collected methodologies may be applicable for MAR sites worldwide. Integr Environ Assess Manag 2022;18:1513-1529. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Ecosystem , Groundwater , Risk Assessment
3.
Front Immunol ; 12: 660382, 2021.
Article in English | MEDLINE | ID: mdl-33986750

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.


Subject(s)
Autoantibodies/blood , Complement Factor H/immunology , Neuromyelitis Optica/blood , Neuromyelitis Optica/immunology , Adult , Blood Proteins/genetics , Complement C3b/metabolism , Complement Factor H/metabolism , Epitope Mapping , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Middle Aged , Neuromyelitis Optica/physiopathology , Young Adult
4.
Front Immunol ; 10: 240, 2019.
Article in English | MEDLINE | ID: mdl-30858847

ABSTRACT

Pentraxin-3 (PTX3) and C-reactive protein (CRP) have been shown to regulate complement activation in vitro, but their role has not been investigated in complement consumption in vivo. Thrombotic microangiopathies (TMA) are often accompanied by complement overactivation and consumption, therefore we analyzed the relation of the systemic pentraxin levels to the complement profile, laboratory parameters and clinical outcome of TMA patients. We determined the PTX3 and CRP levels, complement factor and activation product concentrations in blood samples of 171 subjects with the diagnosis of typical hemolytic uremic syndrome (STEC-HUS) (N = 34), atypical HUS (aHUS) (N = 44), secondary TMA (N = 63), thrombotic thrombocytopenic purpura (TTP) (N = 30) and 69 age-matched healthy individuals. Clinical data, blood count and chemistry were collected from medical records. To determine the in vitro effect of PTX3 on alternative pathway (AP) activation, sheep red blood cell-based hemolytic assay and AP activity ELISA were used. We found that PTX3 levels were elevated in the acute phase of STEC-HUS, aHUS and secondary TMA, whereas PTX3 elevation was exceptional is TTP. Conversely, a significantly higher median CRP was present in all patient groups compared to controls. PTX3, but not CRP was associated with signs of complement consumption in vivo, and PTX3 significantly decreased the AP hemolytic activity in vitro. Our results provide a detailed description of acute phase-TMA patients' complement profile linked to changes in the systemic pentraxin levels that may support further molecular studies on the function of PTX3 in disease pathogenesis and add to the laboratory assessment of complement consumption in TMA.


Subject(s)
C-Reactive Protein/analysis , Complement Activation , Serum Amyloid P-Component/analysis , Thrombotic Microangiopathies/immunology , Adolescent , Adult , Atypical Hemolytic Uremic Syndrome/immunology , C-Reactive Protein/physiology , Child , Complement Pathway, Alternative , Female , Humans , Male , Middle Aged , Purpura, Thrombotic Thrombocytopenic/immunology , Serum Amyloid P-Component/physiology , Thrombotic Microangiopathies/mortality , Young Adult
5.
J Immunol ; 199(1): 292-303, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28533443

ABSTRACT

Factor H-related protein (FHR) 1 is one of the five human FHRs that share sequence and structural homology with the alternative pathway complement inhibitor FH. Genetic studies on disease associations and functional analyses indicate that FHR-1 enhances complement activation by competitive inhibition of FH binding to some surfaces and immune proteins. We have recently shown that FHR-1 binds to pentraxin 3. In this study, our aim was to investigate whether FHR-1 binds to another pentraxin, C-reactive protein (CRP), analyze the functional relevance of this interaction, and study the role of FHR-1 in complement activation and regulation. FHR-1 did not bind to native, pentameric CRP, but it bound strongly to monomeric CRP via its C-terminal domains. FHR-1 at high concentration competed with FH for CRP binding, indicating possible complement deregulation also on this ligand. FHR-1 did not inhibit regulation of solid-phase C3 convertase by FH and did not inhibit terminal complement complex formation induced by zymosan. On the contrary, by binding C3b, FHR-1 allowed C3 convertase formation and thereby enhanced complement activation. FHR-1/CRP interactions increased complement activation via the classical and alternative pathways on surfaces such as the extracellular matrix and necrotic cells. Altogether, these results identify CRP as a ligand for FHR-1 and suggest that FHR-1 enhances, rather than inhibits, complement activation, which may explain the protective effect of FHR-1 deficiency in age-related macular degeneration.


Subject(s)
C-Reactive Protein/immunology , C-Reactive Protein/metabolism , Complement Activation , Complement C3b Inactivator Proteins/immunology , Complement C3b Inactivator Proteins/metabolism , Binding Sites , C-Reactive Protein/chemistry , C-Reactive Protein/pharmacology , Complement C3-C5 Convertases , Complement C3b/immunology , Complement C3b/pharmacology , Complement C3b Inactivator Proteins/pharmacology , Complement Factor H , Extracellular Matrix/drug effects , Extracellular Matrix/immunology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Humans , Ligands , Macular Degeneration/immunology , Protein Binding , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...