Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(2): 479-492, 2023 02.
Article in English | MEDLINE | ID: mdl-34844514

ABSTRACT

Two structurally similar derivatives of chlorophyll a, chlorophyllide a (Chlide) and zinc-pheophorbide a (Zn-Pheide), differing only in central metal ion (Mg2+ or Zn2+, respectively) substituting the tetrapyrrole ring, were investigated with regard to their binding to human serum albumin (HSA). Chlide and Zn-Pheide are very promising photosensitizers with potential application in photodynamic therapy, therefore it is desirable to investigate their interactions with serum proteins. The studies included absorption and steady-state fluorescence spectroscopy, as well as molecular docking. It was found that both investigated compounds form complexes with HSA. Experimental data revealed two classes of binding sites for each compound. The affinities (Ka) for the first class were in the range of 105 and 106 M-1 for Chlide and Zn-Pheide, respectively, while the second class was characterized by the affinities of the order of 104 M-1 for both derivatives. Molecular docking simulations together with displacement studies revealed that the primary binding site of the studied compounds is the heme site, localized in the subdomain IB, however the best characterized binding sites of HSA, namely the Sudlow's sites I and II are also involved. The interactions between the derivatives of chlorophyll and HSA were found to be predominantly hydrophobic and to a lesser extent hydrogen bonding. Our results demonstrate that the centrally bound metal ion determines both the affinity and mode of binding to HSA, which may be a feature differentiating these compounds in terms of their pharmacokinetics.Communicated by Ramaswamy H. Sarma.


Subject(s)
Photosensitizing Agents , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Photosensitizing Agents/pharmacology , Molecular Docking Simulation , Protein Binding , Chlorophyll A , Circular Dichroism , Binding Sites , Metals , Spectrometry, Fluorescence/methods , Thermodynamics
2.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35215347

ABSTRACT

The present study focuses on the photodynamic activity of zinc-substituted pheophorbide a against human endothelial cells. Previously, zinc pheophorbide a has been shown to be a very potent photosensitizer but also a strong albumin binder. Binding to albumin significantly reduces its availability to cancer cells, which may necessitate the use of relatively high doses. Here we show that zinc pheophorbide a is very effective against vascular endothelial cells, even in its albumin-complexed form. Albumin complexation increases the lysosomal accumulation of the drug, thus enhancing its efficiency. Zinc pheophorbide a at nanomolar concentrations induces endothelial cell death via apoptosis, which in many cases is considered a desirable cell death mode because of its anti-inflammatory effect. Additionally, we demonstrate that in comparison to tumor cells, endothelial cells are much more susceptible to photodynamic treatment with the use of the investigated compound. Our findings demonstrate that zinc pheophorbide a is a very promising photosensitizer for use in vascular-targeted photodynamic therapy against solid tumors, acting as a vascular shutdown inducer. It can also possibly find application in the treatment of a range of vascular disorders. Numerous properties of zinc pheophorbide a are comparable or even more favorable than those of the well-known photosensitizer of a similar structure, palladium bacteriopheophorbide (TOOKAD®).

3.
Eur J Pharm Sci ; 167: 106001, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517107

ABSTRACT

Breast cancer resistance protein (BCRP, ABCG2) is a member of the ATP-binding-cassette (ABC) superfamily of membrane transporters. It is involved in the efflux of a broad range of xenobiotics of highly diverse structures. BCRP activity greatly influences drug distribution in vivo and is often associated with cancer multidrug resistance, which is observed in the case of both chemotherapy and photodynamic therapy. The set of ABCG2 substrates includes porphyrins and chlorins such as heme, hemin, protoporphyrin IX, chlorin e6, pheophorbide a, and their derivatives. Here we provide an evidence that magnesium- and zinc-substituted derivatives of pheophorbide a, which are very promising photosensitizers for use in photodynamic therapy, are also recognized and transported by ABCG2. Interestingly, despite minor structural differences, they clearly differ in the transport rate, both between each other and compared to pheophorbide a. In addition, their transport rate, like those of other structurally similar compounds, is strictly dependent on the level of serum albumin in the extracellular environment. The results that we present here are crucial for the use of metal-substituted pheophorbides in clinical practice but also provide an important insight into the mechanism of porphyrin transport by ABCG2.


Subject(s)
Neoplasm Proteins , Photosensitizing Agents , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters , Albumins , Chlorophyll , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism , Photosensitizing Agents/pharmacology
4.
Genes (Basel) ; 11(11)2020 10 22.
Article in English | MEDLINE | ID: mdl-33105651

ABSTRACT

CEP290 is a ciliary gene frequently mutated in ciliopathies, resulting in a broad range of phenotypes, ranging from isolated inherited retinal disorders (IRDs) to severe or lethal syndromes with multisystemic involvement. Patients with non-syndromic CEP290-linked disease experience profound and early vision loss due to cone-rod dystrophy, as in Leber congenital amaurosis. In this case report, we describe two novel loss-of-function heterozygous alterations in the CEP290 gene, discovered in a patient suffering from retinitis pigmentosa using massive parallel sequencing of a molecular inversion probes library constructed for 108 genes involved in IRDs. A milder phenotype than expected was found in the individual, which serves to prove that some CEP290-associated disorders may display preserved cone function.


Subject(s)
Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Retinitis Pigmentosa/genetics , Adult , Female , Humans , Retinal Cone Photoreceptor Cells/physiology , Vision Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...