Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(36): 17896-17905, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37736291

ABSTRACT

New insights into the mechanism of the improved photo(electro)catalytic activity of graphene by heteroatom doping were explored by transient transmittance and reflectance spectroscopy of multi-layer N-doped graphene-based samples on a quartz substrate prepared by chitosan pyrolysis in the temperature range 900-1200 °C compared to an undoped graphene control. All samples had an expected photo-response: fast relaxation (within 1 ps) due to decreased plasmon damping and increased conductivity. However, the N-doped graphenes had an additional transient absorption signal of roughly 10 times lower intensity, with 10-50 ps formation time and the lifetime extending into the nanosecond domain. These photo-induced responses were recalculated as (complex) dielectric function changes and decomposed into Drude-Lorentz parameters to derive the origin of the opto(electronic) responses. Consequently, the long-lived responses were revealed to have different dielectric function spectra from those of the short-lived responses, which was ultimately attributed to electron trapping at doping centers. These trapped electrons are presumed to be responsible for the improved catalytic activity of multi-layer N-doped graphene-based films compared to that of multi-layer undoped graphene-based films.

2.
ACS Appl Mater Interfaces ; 15(30): 36434-36446, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477336

ABSTRACT

Mixed-metal-organic frameworks (MMOFs) have emerged as promising photocatalyst candidates in multiple reactions. For instance, the doping of Zr-UiO-type MOFs with Ce atoms increases their photoactivity owing to a better overlap between the organic linker and Ce orbitals. However, it is not clear which is the ideal content of Ce to reach the optimal photocatalytic performance. Herein, a series of MMOFs isostructural to UiO-66 and with napthalene-2,6-dicarboxylate (NDC) as a linker were synthesized and characterized. The Ce content was varied from 0 to 100% and their corresponding structural, chemical, photodynamic, and photoresponse properties were investigated. Powder X-ray diffraction shows that when the content of Ce is 12% onward, in addition to the UiO-type structure, a second crystalline structure is cosynthesized (NDC-Ce). Steady-state and femtosecond (fs) to millisecond (ms) spectroscopy studies reveal the existence of two competing processes: a linker excimer formation and an ultrafast ligand-to-cluster charge transfer (LCCT) phenomenon from the organic linker to Zr/Ce metal clusters. The ultrafast (fs-regime) LCCT process leads to the formation of long-lived charge-separated states, which are more efficiently photoproduced when the content of Ce reaches 9%, suggesting that the related material would show the highest photoactivity. Photoaction spectroscopic measurements corroborate that the sample with 9% of Ce exhibits the maximum photocatalytic efficiency, which is reflected in a 20% increment in overall water splitting efficiency compared with the monometallic Zr-based MOF. The current study demonstrates the relationship between the photodynamical properties of the MMOFs and their photocatalytic performance, providing new findings and opening new ways for improving the design of new MOFs with enhanced photocatalytic activities.

3.
ACS Appl Mater Interfaces ; 14(18): 21007-21017, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35482456

ABSTRACT

Defect engineering is a valuable tool to tune the photocatalytic activity of metal-organic frameworks (MOFs). Inducing defects through the attachment of functionalized modulators can introduce cooperative units that can tune the bandgap of the material and enhance their chemical, thermal, and photostabilities among other properties. However, the majority of defect engineering studies for photocatalytic applications are limited to Zr-based MOFs, and there is still a lack of interrelation between synthetic variables, the resultant MOF properties, and their effect on their photocatalytic performance. We report a comprehensive study on the defect engineering of the titanium heterometallic MOF MUV-10 by fluoro- and hydroxy-isophthalic acid (Iso) modulators, rationalizing the effect of the materials' properties on their photocatalytic activity for hydrogen production. The Iso-OH modified MOFs present a volcano-type profile with a 2.3-fold increase in comparison to the pristine materials, whereas the Iso-F modified samples have a gradual increase with up to a 4.2-fold enhancement. It has been demonstrated that ∼9% of Iso-OH modulator incorporation produces ∼40% defects, inducing band gap reduction and longer excited states lifetime. Similar defect percentages have been generated upon near 40% Iso-F modulator incorporation; however, negligible band gap changes and shorter excited states lifetimes were determined. The higher photocatalytic activity in Iso-F modulator derived MOF has been attributed to the effect of the divergent defect-compensation modes on the materials' photostability and to the increase in the external surface area upon introduction of Iso-F modulator.

4.
Chem Commun (Camb) ; 57(78): 10075-10078, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34514482

ABSTRACT

In comparison with the Co analog, small Fe clusters incorporated in a graphene matrix exhibit a photo-assisted increase of 110% in reverse water gas shift CO2 hydrogenation under UV-Vis light irradiation. Available data indicate that the photo-assistance derives from light absorption by the N-doped graphene followed by charge recombination at the Fe clusters, increasing their local temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...