Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Dalton Trans ; 52(45): 17030-17040, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37937450

ABSTRACT

In the last 20 years, research in the field of MRI (magnetic resonance imaging) contrast agents (CAs) has been intensified due to the emergence of a disease called nephrogenic systemic fibrosis (NSF). NSF has been linked to the in vivo dissociation of certain Gd(III)-based compounds applied in MRI as CAs. To prevent the dechelation of the probes after intravenous injection, the improvement of their in vivo stability is highly desired. The inertness of the Gd(III) chelates can be increased through the rigidification of the ligand structure. One of the potential ligands is (2,2',2'',2'''-(([2,2'-bipyridine]-6,6'-diylbis(methylene))bis(azanetriyl))tetraacetic acid) (H4DIPTA), which has been successfully used as a fluorescent probe for lanthanides; however, it has never been considered as a potential chelator for Gd(III) ions. In this paper, we report the thermodynamic, kinetic and structural features of the complex formed between Gd(III) and DIPTA. Since the solubility of the [Gd(DIPTA)]- chelate is very low under acidic conditions, hampering its thermodynamic characterization, we can only assume that its stability is close to that determined for the structural analogue [Gd(FENTA)]- (H4FENTA: (1,10-phenanthroline-2,9-diyl)bis(methyliminodiacetic acid)), which is similar to that determined for the agent [Gd(DTPA)]2- routinely used in clinical practice. Unfortunately, the inertness of [Gd(DIPTA)]- is significantly lower (t1/2 = 1.34 h) than that observed for [Gd(EGTA)]- and [Gd(DTPA)]2- as a result of its spontaneous dissociation pathway during dechelation. The relaxivity values of [Gd(DIPTA)]- are comparable with those of [Gd(FENTA)]- and somewhat higher than the values characterizing [Gd(DTPA)]2-. Luminescence lifetime measurements indicate the presence of one water molecule (q = 1) in the inner sphere of the complex with a relatively high water exchange rate (k298ex = 43(5) × 106 s-1). DFT calculations suggest a rigid distorted tricapped trigonal prismatic polyhedron for the Gd(III) complex. On the basis of these results, we can conclude that the bipyridine backbone is not favourable with respect to the inertness of the chelate.

2.
Int J Pharm ; 632: 122527, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36566825

ABSTRACT

Malignant melanoma is a major public health problem with an increasing incidence and mortality in the Caucasian population due to its significant metastatic potential. The early detection of this cancer type by imaging techniques like positron emission tomography acts as an important contributor to the long-term survival. Based on literature data, the radio labelled alpha-MSH analog NAPamide molecule is an appropriate diagnostic tool for the detection of melanoma tumors. Inspired by these facts, a new radiotracer, the [61Cu]Cu-KFTG-NAPamide has been synthesized to exploit the beneficial features of the positron emitter 61Cu and the melanoma specificity of the NAPamide molecule. In this work, we report a new member of the CB-15aneN5 ligand family (KFTG) as the chelator for 61Cu(II) complexation. On the basis of the thorough physico-chemical characterization, the rigid [Cu(KFTG)]+ complex exhibits fast complex formation (t1/2 = 155 s at pH 5.0 and 25 °C) and high inertness (t1/2 = 2.0 h in 5.0 M HCl at 50 °C) as well as moderate superoxide dismutase activity (IC50 = 2.3 µM). Furthermore, the [61Cu]Cu-KFTG-NAPamide possesses outstanding features in the diagnostics of B16-F10 melanoma tumors by PET imaging: (T/M(SUVs) (in vivo): appr. 14, %ID/g: 7 ± 1 and T/M (ex vivo): 315 ± 24 at 180 min).


Subject(s)
Melanoma, Experimental , Radiopharmaceuticals , Animals , Humans , Radiopharmaceuticals/chemistry , alpha-MSH/chemistry , Peptide Fragments , Positron-Emission Tomography/methods , Melanoma, Experimental/diagnostic imaging , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...