Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(33): 333001, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28569239

ABSTRACT

A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.

2.
Opt Lett ; 40(22): 5291-4, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565857

ABSTRACT

Parity-time (PT) symmetry allows for implementing controllable matching conditions for the four-wave mixing in 1D coupled waveguides. Different types of the process involving energy transition between slow and fast modes are established. In the case of defocusing Kerr media, the degenerated four-wave mixing is studied in detail. It is shown that unbroken PT symmetry supports the process existing in the conservative limit and, at the same time, originates new types of matching conditions, which cannot exist in the conservative system. In the former case, a slow beam splits into two fast beams, with nearly conserved total power, while in the latter case, one slow beam and one fast beam are generated. In the last process, the energy of the input primary slow beam is not changed and growth of the energy of the generated slow beam varies due to gain and loss of the medium. The appreciable generation of the fifth mode, i.e., the effect of the secondary resonant interactions, is observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...