Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Stem Cell Res Ther ; 14(1): 345, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38049901

ABSTRACT

BACKGROUND: Genomic sequencing in congenital heart disease (CHD) patients often discovers novel genetic variants, which are classified as variants of uncertain significance (VUS). Functional analysis of each VUS is required in specialised laboratories, to determine whether the VUS is disease causative or not, leading to lengthy diagnostic delays. We investigated stem cell cardiac disease modelling and transcriptomics for the purpose of genetic variant classification using a GATA4 (p.Arg283Cys) VUS in a patient with CHD. METHODS: We performed high efficiency CRISPR gene editing with homology directed repair in induced pluripotent stem cells (iPSCs), followed by rapid clonal selection with amplicon sequencing. Genetic variant and healthy matched control cells were compared using cardiomyocyte disease modelling and transcriptomics. RESULTS: Genetic variant and healthy cardiomyocytes similarly expressed Troponin T (cTNNT), and GATA4. Transcriptomics analysis of cardiomyocyte differentiation identified changes consistent with the patient's clinical human phenotype ontology terms. Further, transcriptomics revealed changes in calcium signalling, and cardiomyocyte adrenergic signalling in the variant cells. Functional testing demonstrated, altered action potentials in GATA4 genetic variant cardiomyocytes were consistent with patient cardiac abnormalities. CONCLUSIONS: This work provides in vivo functional studies supportive of a damaging effect on the gene or gene product. Furthermore, we demonstrate the utility of iPSCs, CRISPR gene editing and cardiac disease modelling for genetic variant interpretation. The method can readily be applied to other genetic variants in GATA4 or other genes in cardiac disease, providing a centralised assessment pathway for patient genetic variant interpretation.


Subject(s)
Gene Editing , Heart Defects, Congenital , Humans , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Myocytes, Cardiac/metabolism , Base Sequence , Signal Transduction
2.
Sci Rep ; 13(1): 11296, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438479

ABSTRACT

Familial hypertrophic cardiomyopathy (FHC) patients are advised to avoid strenuous exercise due to increased risk of arrhythmias. Mice expressing the human FHC-causing mutation R403Q in the myosin heavy chain gene (MYH6) recapitulate the human phenotype, including cytoskeletal disarray and increased arrhythmia susceptibility. Following in vivo administration of isoproterenol, mutant mice exhibited tachyarrhythmias, poor recovery and fatigue. Arrhythmias were attenuated with the ß-blocker atenolol and protein kinase A inhibitor PKI. Mutant cardiac myocytes had significantly prolonged action potentials and triggered automaticity due to reduced repolarization reserve and connexin 43 expression. Isoproterenol shortened cycle length, and escalated electrical instability. Surprisingly isoproterenol did not increase CaV1.2 current. We found alterations in CaV1.2-ß1 adrenergic receptor colocalization assessed using super-resolution nanoscopy, and increased CaV1.2 phosphorylation in mutant hearts. Our results reveal for the first time that altered ion channel expression, co-localization and ß-adrenergic receptor signaling associated with myocyte disarray contribute to electrical instability in the R403Q mutant heart.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial , Cardiomyopathy, Hypertrophic , Humans , Animals , Mice , Isoproterenol , Cardiomyopathy, Hypertrophic/genetics , Arrhythmias, Cardiac , Heart
3.
Commun Biol ; 6(1): 4, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596888

ABSTRACT

Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young's Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key 'linker' sites in this schema that may represent potential therapeutic targets.


Subject(s)
Cardiomyopathy, Hypertrophic , Mice , Humans , Animals , Feedback , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cytoskeleton/metabolism , Myocytes, Cardiac/metabolism , Troponin I/genetics , Troponin I/metabolism , Extracellular Matrix/metabolism , Hydrogels
4.
Aging Cell ; 20(7): e13408, 2021 07.
Article in English | MEDLINE | ID: mdl-34096683

ABSTRACT

Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep/ep ) or hyper-accurate (Mrps12ha/ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep/ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha/ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.


Subject(s)
Cardiovascular Diseases/genetics , Mitochondria/metabolism , Stress, Physiological/genetics , Animals , Humans , Longevity , Male , Mice
5.
Proc Natl Acad Sci U S A ; 117(37): 23113-23124, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32859761

ABSTRACT

Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in "at risk" patients with identified Gly203Ser gene mutations.


Subject(s)
Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation/genetics , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peptides/pharmacology , Troponin I/metabolism
6.
Front Physiol ; 11: 599822, 2020.
Article in English | MEDLINE | ID: mdl-33384612

ABSTRACT

In amphibian skeletal muscle calcium (Ca2+) sparks occur both as voltage-dependent and voltage-independent ligand-activated release events. However, whether their properties and their origin show similarities are still in debate. Elevated K+, constant Cl- content solutions were used to initiate small depolarizations of the resting membrane potential to activate dihydropyridine receptors (DHPR) and caffeine to open ryanodine receptors (RyR) on intact fibers. The properties of Ca2+ sparks observed under control conditions were compared to those measured on depolarized cells and those after caffeine treatment. Calcium sparks were recorded on intact frog skeletal muscle fibers using high time resolution confocal microscopy (x-y scan: 30 Hz). Sparks were elicited by 1 mmol/l caffeine or subthreshold depolarization to different membrane potentials. Both treatments increased the frequency of sparks and altered their morphology. Images were analyzed by custom-made computer programs. Both the amplitude (in ΔF/F0; 0.259 ± 0.001 vs. 0.164 ± 0.001; n = 24942 and 43326, respectively; mean ± SE, p < 0.001) and the full width at half maximum (FWHM, in µm; parallel with fiber axis: 2.34 ± 0.01 vs. 1.92 ± 0.01, p < 0.001; perpendicular to fiber axis: 2.08 ± 0.01 vs. 1.68 ± 0.01, p < 0.001) of sparks was significantly greater after caffeine treatment than on depolarized cells. 9.8% of the sparks detected on depolarized fibers and about one third of the caffeine activated sparks (29.7%) overlapped with another one on the previous frame on x-y scans. Centre of overlapping sparks travelled significantly longer distances between consecutive frames after caffeine treatment then after depolarization (in µm; 1.66 ± 0.01 vs. 0.95 ± 0.01, p < 0.001). Our results suggest that the two types of ryanodine receptors, the junctional RyRs controlled by DHPRs and the parajunctional RyRs are activated independently, using alternate ways, with the possibility of cooperation between neighboring release channels.

7.
Pflugers Arch ; 472(1): 61-74, 2020 01.
Article in English | MEDLINE | ID: mdl-31822999

ABSTRACT

Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.


Subject(s)
Action Potentials , Calcium Channels, L-Type/metabolism , Calcium Signaling , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type III/metabolism , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Female , Heart Ventricles/cytology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Ornithine/analogs & derivatives , Ornithine/pharmacology , Rats , Rats, Sprague-Dawley
8.
EMBO J ; 38(24): e102155, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31721250

ABSTRACT

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Subject(s)
Cell Proliferation , Mitochondria/metabolism , Organelle Biogenesis , Signal Transduction , Animals , Citric Acid Cycle/physiology , Escherichia coli/metabolism , Female , Metabolomics , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Proteomics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Stem Cell Res ; 33: 269-273, 2018 12.
Article in English | MEDLINE | ID: mdl-30508693

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is an inherited cardiomyopathy characterized by left ventricular hypertrophy ≥15 mm in the absence of loading conditions. HCM has a prevalence of up to one in 200, and can result in significant adverse outcomes including heart failure and sudden cardiac death. An induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells obtained from the whole blood of a 38-year-old female patient with HCM in which genetic testing identified the well-known pathogenic p.Arg403Gln mutation in myosin heavy chain 7. iPSCs express pluripotency markers, demonstrate trilineage differentiation capacity, and display a normal 46,XX female karyotype. This resource will allow further assessment of the pathophysiological development of HCM.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Induced Pluripotent Stem Cells/metabolism , Myosin Heavy Chains/genetics , Adult , Cell Differentiation , Female , Humans , Mutation
10.
Sci Rep ; 8(1): 7207, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29725018

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

11.
Sci Rep ; 7(1): 15118, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123182

ABSTRACT

The "Fight or Flight" response is elicited by extrinsic stress and is necessary in many species for survival. The response involves activation of the ß-adrenergic signalling pathway. Surprisingly the mechanisms have remained unresolved. Calcium influx through the cardiac L-type Ca2+ channel (Cav1.2) is absolutely required. Here we identify the functionally relevant site for PKA phosphorylation on the human cardiac L-type Ca2+ channel pore forming α1 subunit using a novel approach. We used a cell free system where we could assess direct effects of PKA on human purified channel protein function reconstituted in proteoliposomes. In addition to assessing open probability of channel protein we used semi-quantitative fluorescent phosphoprotein detection and MS/MS mass spectrometry analysis to demonstrate the PKA specificity of the site. Robust increases in frequency of channel openings were recorded after phosphorylation of the long and short N terminal isoforms and the channel protein with C terminus truncated at aa1504. A protein kinase A anchoring protein (AKAP) was not required. We find the novel PKA phosphorylation site at Ser1458 is in close proximity to the Repeat IV S6 region and induces a conformational change in the channel protein that is necessary and sufficient for increased calcium influx through the channel.


Subject(s)
Calcium Channels, L-Type/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Protein Processing, Post-Translational , Allosteric Regulation , Fluorometry , HEK293 Cells , Humans , Phosphorylation , Protein Conformation , Substrate Specificity , Tandem Mass Spectrometry
12.
Int J Biochem Cell Biol ; 86: 32-36, 2017 05.
Article in English | MEDLINE | ID: mdl-28323207

ABSTRACT

The heart is able to respond acutely to changes in oxygen tension. Since ion channels can respond rapidly to stimuli, the "ion channel oxygen sensing hypothesis" has been proposed to explain acute adaptation of cells to changes in oxygen demand. However the exact mechanism for oxygen sensing continues to be debated. Mitochondria consume the lion's share of oxygen in the heart, fuelling the production of ATP that drives excitation and contraction. Mitochondria also produce reactive oxygen species that are capable of altering the redox state of proteins. The cardiac L-type calcium channel is responsible for maintaining excitation and contraction. Recently, the reactive cysteine on the cardiac L-type calcium channel was identified. These data clarified that the channel does not respond directly to changes in oxygen tension, but rather responds to cellular redox state. This leads to acute alterations in cell signalling responsible for the development of arrhythmias and pathology.


Subject(s)
Calcium Channels, L-Type/metabolism , Oxygen/metabolism , Animals , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Gene Expression Regulation , Humans
13.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 46-54, 2017 12.
Article in English | MEDLINE | ID: mdl-28306174

ABSTRACT

Cardiovascular disease is the leading cause of death in the Western world. The incidence of cardiovascular disease is predicted to further rise with the increase in obesity and diabetes and with the aging population. Even though the survival rate from ischaemic heart disease has improved over the past 30 years, many patients progress to a chronic pathological condition, known as cardiac hypertrophy that is associated with an increase in morbidity and mortality. Reactive oxygen species (ROS) and calcium play an essential role in mediating cardiac hypertrophy. The L-type calcium channel is the main route for calcium influx into cardiac myocytes. There is now good evidence for a direct role for the L-type calcium channel in the development of cardiac hypertrophy. Cysteines on the channel are targets for redox modification and glutathionylation of the channel can modulate the function of the channel protein leading to the onset of pathology. The cysteine responsible for modification of L-type calcium channel function has now been identified. Detailed understanding of the role of cysteines as possible targets during oxidative stress may assist in designing therapy to prevent the development of hypertrophy and heart failure.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Ventricular Remodeling , Animals , Calcium Channels, L-Type/chemistry , Cardiomegaly/diagnosis , Cardiomegaly/physiopathology , Cysteine , Humans , Myocytes, Cardiac/pathology , Oxidation-Reduction , Protein Conformation , Protein Interaction Domains and Motifs , Structure-Activity Relationship
14.
J Physiol ; 594(14): 4051-70, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27062056

ABSTRACT

KEY POINTS: Genetic mutations in cardiac troponin I (cTnI) are associated with development of hypertrophic cardiomyopathy characterized by myocyte remodelling, disorganization of cytoskeletal proteins and altered energy metabolism. The L-type Ca(2+) channel is the main route for calcium influx and is crucial to cardiac excitation and contraction. The channel also regulates mitochondrial function in the heart by a functional communication between the channel and mitochondria via the cytoskeletal network. We find that L-type Ca(2+) channel kinetics are altered in cTnI-G203S cardiac myocytes and that activation of the channel causes a significantly greater increase in mitochondrial membrane potential and metabolic activity in cTnI-G203S cardiac myocytes. These responses occur as a result of impaired communication between the L-type Ca(2+) channel and cytoskeletal protein F-actin, involving decreased movement of actin-myosin and block of the mitochondrial voltage-dependent anion channel, resulting in a 'hypermetabolic' mitochondrial state. We propose that L-type Ca(2+) channel antagonists, such as diltiazem, might be effective in reducing the cardiomyopathy by normalizing mitochondrial metabolic activity. ABSTRACT: Genetic mutations in cardiac troponin I (cTnI) account for 5% of families with hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is associated with disorganization of cytoskeletal proteins and altered energy metabolism. The L-type Ca(2+) channel (ICa-L ) plays an important role in regulating mitochondrial function. This involves a functional communication between the channel and mitochondria via the cytoskeletal network. We investigate the role of ICa-L in regulating mitochondrial function in 25- to 30-week-old cardiomyopathic mice expressing the human disease-causing mutation Gly203Ser in cTnI (cTnI-G203S). The inactivation rate of ICa-L is significantly faster in cTnI-G203S myocytes [cTnI-G203S: τ1  = 40.68 ± 3.22, n = 10 vs. wild-type (wt): τ1  = 59.05 ± 6.40, n = 6, P < 0.05]. Activation of ICa-L caused a greater increase in mitochondrial membrane potential (Ψm , 29.19 ± 1.85%, n = 15 vs. wt: 18.84 ± 2.01%, n = 10, P < 0.05) and metabolic activity (24.40 ± 6.46%, n = 8 vs. wt: 9.98 ± 1.57%, n = 9, P < 0.05). The responses occurred because of impaired communication between ICa-L and F-actin, involving lack of dynamic movement of actin-myosin and block of the mitochondrial voltage-dependent anion channel. Similar responses were observed in precardiomyopathic mice. ICa-L antagonists nisoldipine and diltiazem decreased Ψm to basal levels. We conclude that the Gly203Ser mutation leads to impaired functional communication between ICa-L and mitochondria, resulting in a 'hypermetabolic' state. This might contribute to development of cTnI-G203S cardiomyopathy because the response is present in young precardiomyopathic mice. ICa-L antagonists might be effective in reducing the cardiomyopathy by altering mitochondrial function.


Subject(s)
Calcium Channels, L-Type/physiology , Cardiomyopathy, Hypertrophic/physiopathology , Mitochondria, Heart/physiology , Actins/physiology , Animals , Calcium/physiology , Calcium Channel Blockers/pharmacology , Cardiomyopathy, Hypertrophic/genetics , Cytoskeleton/physiology , Diltiazem/pharmacology , Disease Models, Animal , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mutation , Myocytes, Cardiac/physiology , Nisoldipine/pharmacology , Superoxides/metabolism , Troponin I/genetics
15.
Sci Rep ; 6: 19067, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26750869

ABSTRACT

Ion channels are critical to life and respond rapidly to stimuli to evoke physiological responses. Calcium influx into heart muscle occurs through the ion conducting α1C subunit (Cav1.2) of the L-type Ca(2+) channel. Glutathionylation of Cav1.2 results in increased calcium influx and is evident in ischemic human heart. However controversy exists as to whether direct modification of Cav1.2 is responsible for altered function. We directly assessed the function of purified human Cav1.2 in proteoliposomes. Truncation of the C terminus and mutation of cysteines in the N terminal region and cytoplasmic loop III-IV linker did not alter the effects of thiol modifying agents on open probability of the channel. However mutation of cysteines in cytoplasmic loop I-II linker altered open probability and protein folding assessed by thermal shift assay. We find that C543 confers sensitivity of Cav1.2 to oxidative stress and is sufficient to modify channel function and posttranslational folding. Our data provide direct evidence for the calcium channel as a redox sensor that facilitates rapid physiological responses.


Subject(s)
Calcium Channels, L-Type/metabolism , Myocardium/metabolism , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Cysteine/genetics , Dithionitrobenzoic Acid/pharmacology , Dithiothreitol/pharmacology , Humans , Mutation/genetics , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Protein Folding/drug effects , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sulfhydryl Compounds/metabolism
16.
JACC Basic Transl Sci ; 1(1-2): 61-72, 2016.
Article in English | MEDLINE | ID: mdl-30167506

ABSTRACT

Heterozygous mice (αMHC403/+ ) expressing the human disease-causing mutation Arg403Gln exhibit cardinal features of hypertrophic cardiomyopathy (HCM) including hypertrophy, myocyte disarray, and increased myocardial fibrosis. Treatment of αMHC403/+ mice with the L-type calcium channel (ICa-L) antagonist diltiazem has been shown to decrease left ventricular anterior wall thickness, cardiac myocyte hypertrophy, disarray, and fibrosis. However, the role of the ICa-L in the development of HCM is not known. In addition to maintaining cardiac excitation and contraction in myocytes, the ICa-L also regulates mitochondrial function through transmission of movement of ICa-L via cytoskeletal proteins to mitochondrial voltage-dependent anion channel. Here, the authors investigated the role of ICa-L in regulating mitochondrial function in αMHC403/+ mice. Whole-cell patch clamp studies showed that ICa-L current inactivation kinetics were significantly increased in αMHC403/+ cardiac myocytes, but that current density and channel expression were similar to wild-type cardiac myocytes. Activation of ICa-L caused a significantly greater increase in mitochondrial membrane potential and metabolic activity in αMHC403/+ . These increases were attenuated with ICa-L antagonists and following F-actin or ß-tubulin depolymerization. The authors observed increased levels of fibroblast growth factor-21 in αMHC403/+ mice, and altered mitochondrial DNA copy number consistent with altered mitochondrial activity and the development of cardiomyopathy. These studies suggest that the Arg403Gln mutation leads to altered functional communication between ICa-L and mitochondria that is associated with increased metabolic activity, which may contribute to the development of cardiomyopathy. ICa-L antagonists may be effective in reducing the cardiomyopathy in HCM by altering metabolic activity.

17.
ACS Nano ; 9(1): 279-89, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25493575

ABSTRACT

Increased reactive oxygen species (ROS) production and elevated intracellular Ca(2+) following cardiac ischemia-reperfusion injury are key mediators of cell death and the development of cardiac hypertrophy. The L-type Ca(2+) channel is the main route for calcium influx in cardiac myocytes. Activation of the L-type Ca(2+) channel leads to a further increase in mitochondrial ROS production and metabolism. We have previously shown that the application of a peptide derived against the alpha-interacting domain of the L-type Ca(2+) channel (AID) decreases myocardial injury post reperfusion. Herein, we examine the efficacy of simultaneous delivery of the AID peptide in combination with the potent antioxidants curcumin or resveratrol using multifunctional poly(glycidyl methacrylate) (PGMA) nanoparticles. We highlight that drug loading and dissolution are important parameters that have to be taken into account when designing novel combinatorial therapies following cardiac ischemia-reperfusion injury. In the case of resveratrol low loading capacity and fast release rates hinder its applicability as an effective candidate for simultaneous therapy. However, in the case of curcumin, high loading capacity and sustained release rates enable its effective simultaneous delivery in combination with the AID peptide. Simultaneous delivery of the AID peptide with curcumin allowed for effective attenuation of the L-type Ca(2+) channel-activated increases in superoxide (assessed as changes in DHE fluorescence; Empty NP = 53.1 ± 7.6%; NP-C-AID = 7.32 ± 3.57%) and mitochondrial membrane potential (assessed as changes in JC-1 fluorescence; Empty NP = 19.8 ± 2.8%; NP-C-AID=13.05 ± 1.78%). We demonstrate in isolated rat hearts exposed to ischemia followed by reperfusion, that curcumin and the AID peptide in combination effectively reduce muscle damage, decrease oxidative stress and superoxide production in cardiac myocytes.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Calcium Channels, L-Type/chemistry , Myocardial Reperfusion Injury/prevention & control , Nanoparticles/chemistry , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Animals , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Drug Interactions , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Polyethyleneimine/chemistry , Polymethacrylic Acids/chemistry , Rats , Resveratrol , Stilbenes/chemistry , Stilbenes/pharmacology , Superoxides/metabolism
18.
Indian J Biochem Biophys ; 50(5): 411-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24772962

ABSTRACT

Ca2+ sparks represent synchronous opening of the ryanodine receptor (RyR) Ca2+ release channels located at the sarcoplasmic reticulum (SR) membrane. Whereas a quantal nature of Ca2+ sparks has been defined in cardiac muscle, the regulation of Ca2+ sparks in skeletal muscle has not been well-studied. Osmotic-stress applied to an intact skeletal muscle fiber can produce brief Ca2+ sparks and prolonged Ca2+ burst events. Here, we show that termination of Ca2+ bursts occurs in a step wise and quantal manner. Ca2+ burst events display kinetic features that are consistent with the involvement of both stochastic attrition and coordinated closure of RyR channels in the termination of SR Ca2+ release. Elemental unitary transition steps could be defined with a mean deltaF/F0 of approximately 0.28. corresponding to the gating of 1-2 RyR channels. Moreover, the amplitude of the elemental transition steps declines at the later stage of the burst event. In tandem Ca2+ burst events where two Ca2+ bursts occur at the same position within a fiber in rapid succession, the trailing event is consistently of lower amplitude than the initial event. These two complementary results suggest that SR Ca2+ release may be associated with local depletion of SR Ca2+ stores in mammalian skeletal muscle.


Subject(s)
Calcium Signaling , Muscle, Skeletal/cytology , Osmotic Pressure , Animals , Calcium/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Time Factors
19.
Pflugers Arch ; 453(4): 509-18, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17021795

ABSTRACT

Although extracellular adenosine triphosphate (ATP) has been generally accepted as the regulator of cellular differentiation, the relative contribution of the various purinoreceptor subtypes to purinergic signalling at distinct stages of skeletal muscle differentiation is still poorly understood. Here we measured extracellular ATP-evoked changes in intracellular calcium concentration and surface membrane ionic currents (I (ATP)), calculated the calcium flux (FL) entering the myoplasmic space and compared these parameters at different stages of differentiation on cultured mouse myotubes. The ATP-evoked FL displayed an early peak and then declined to a steady level. With differentiation, the early peak became separated from the maintained component and was absent on mature myotubes. Repeated ATP applications caused desensitization of the response in both immature and differentiated myotubes, owing mainly to the reduction of the early peak of FL in the former and to a decline of both components in the latter group of cells. Depolarization of the cell or removal of external calcium suppressed the early peak. I (ATP) showed no inactivation, and its voltage dependence displayed strong inward rectification. The concentration dependence of I (ATP) can be fitted using a Hill equation, yielding an EC(50) of 56 microM. Results are consistent with the parallel activation of both P2X and P2Y receptors.


Subject(s)
Adenosine Triphosphate/pharmacology , Calcium/metabolism , Cell Differentiation/drug effects , Muscle, Skeletal/drug effects , Animals , Biological Transport/drug effects , Cell Differentiation/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Membrane Potentials/drug effects , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Receptors, Purinergic , Signal Transduction/drug effects , Suramin/pharmacology , Time Factors
20.
Pflugers Arch ; 453(4): 519-29, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17043813

ABSTRACT

Although the alteration of purinoreceptor pattern on skeletal muscle is known to accompany physiological muscle differentiation and the pathogenesis of muscle dystrophy, the exact identity of and the relative contribution from the individual receptor subtypes to the purinergic signal have been controversial. To identify these subtypes in cultured myotubes of 5-10 nuclei, changes in intracellular calcium concentration and surface membrane ionic currents were detected and calcium fluxes calculated after the application of the subtype-specific agonists 2'3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), 2-methyltio-ADP and UTP. The effectiveness of these agonists together with positive immunocytochemical staining revealed the presence of P2X(4), P2X(5), P2X(7), P2Y(1) and P2Y(4) receptors. siRNA-reduced protein expression of P2X(5), P2X(7) and P2Y(1) receptors was accompanied by reduction in the ATP-evoked calcium transients. Furthermore, anti-P2X(7) siRNA caused a significant drop in the early peak and delayed steady component of the calculated calcium flux. The use of its antagonist, oxidized ATP, similarly to transfection with anti-P2X(7) siRNA caused significant reduction in the agonist-elicited ionic currents I (ATP) and I (BzATP), with a greater drop in the latter. Our results demonstrate that the activation of ionotropic P2X(4), P2X(5) and P2X(7) and metabotropic P2Y(1) and P2Y(4) purinoreceptors participates in forming the calcium transients of multinucleated myotubes.


Subject(s)
Adenosine Triphosphate/pharmacology , Calcium/metabolism , Muscle Fibers, Skeletal/drug effects , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/analogs & derivatives , Animals , Biological Transport/drug effects , Blotting, Western , Cells, Cultured , Fluorescent Antibody Technique , Immunohistochemistry , Membrane Potentials/drug effects , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Patch-Clamp Techniques , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , RNA, Small Interfering/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X
SELECTION OF CITATIONS
SEARCH DETAIL
...