Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 55(8-9): 19-26, 2007.
Article in English | MEDLINE | ID: mdl-17546965

ABSTRACT

The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m(3)) at the Himmerfjärden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5g N m(-2)d(-1) with a maximum value equal to 1.9 g N m(-2)d(-1). Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2g N m(-2)2d(-1)) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.


Subject(s)
Bacteria, Anaerobic/physiology , Bioreactors , Nitrogen/metabolism , Quaternary Ammonium Compounds/metabolism , Waste Disposal, Fluid/methods , Biofilms , Hydrogen-Ion Concentration , Nitrates/metabolism , Nitrites/metabolism , Water Pollutants, Chemical/metabolism
2.
Water Sci Technol ; 54(8): 209-17, 2006.
Article in English | MEDLINE | ID: mdl-17163030

ABSTRACT

Traditional nitrification/denitrification is not suitable for nitrogen removal when wastewater contains high concentrations of ammonium nitrogen and low concentrations of biodegradable carbon. Recently, a deammonification process was developed and proposed as a new technology for treatment of such streams. This process relies on a stable interaction between aerobic bacteria Nitrosomonas, that accomplish partial nitritation and anaerobic bacteria Planctomycetales, which conduct the Anammox reaction. Simultaneous performance of these two processes can lead to a complete autotrophic nitrogen removal in one single reactor. The experiments where nitrogen was removed in one reactor were performed at a technical-scale moving-bed pilot plant, filled with Kaldnes rings and supplied with supernatant after dewatering of digested sludge. It was found that a nitrogen removal rate obtained at the pilot plant was 1.9 g m(-2) d(-1). Parallel to the pilot plant run, a series of batch tests were carried out under anoxic and aerobic conditions. Within the batch tests, where the pilot plant's conditions were simulated, removal rates reached up to 3 g N m(-2)d(-1). Moreover, the batch tests with inhibition of Nitrosomonas showed that only the Anammox bacteria (not anoxic removal by Nitrosomonas) are responsible for nitrogen removal.


Subject(s)
Bioreactors , Nitrogen/isolation & purification , Waste Disposal, Fluid/methods , Aerobiosis , Ammonia/metabolism , Biodegradation, Environmental , Biofilms , Carbon/metabolism , Nitrogen/metabolism , Nitrosomonas/metabolism , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...