Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 12: e119539, 2024.
Article in English | MEDLINE | ID: mdl-38841134

ABSTRACT

Background: Biological invasions pose an increasing risk to nature, social security and the economy, being ranked amongst the top five threats to biodiversity. Managing alien and invasive species is a priority for the European Union, as outlined in the EU Biodiversity Strategy for 2030 and the Kunming-Montreal Global Biodiversity Framework. Alien plant species are acknowledged to impact the economy and biodiversity; thus, analysing the distribution of such species provides valuable inputs for the management and decision-making processes. The database presented in the current study is the first consolidated checklist of alien plant species that are present in Romania, both of European Union concern and of national interest. This database complements a prior published distribution, based only on records from literature, bringing new information regarding the occurrence of alien plants in Romania, as revealed by a nationwide field survey. We consider this database a valuable instrument for managing biological invasions at both national and regional levels, as it can be utilised in further research studies and in drafting management and action plans, assisting stakeholders in making informed decisions and implementing management actions. New information: We present the results of the first nationwide survey of alien plant species in Romania, conducted between 2019 and 2022, in the framework of a national project coordinated by the Ministry of Environment, Waters and Forests and the University of Bucharest. The present database complements and updates the database published by Sirbu et. al (2022), which included occurrence records published until 2019. The new database includes 98323 occurrence records for 396 alien plant species in 77 families, with most species belonging to the Asteraceae family. One alien plant species in our database, the black locust Robiniapseudoacacia L., had more than 10,000 occurrence records. The distribution database also includes information on newly-reported invasive alien plant species of European Union concern in Romania (i.e. the floating primrose-willow Ludwigiapeploides (Kunth) P.H.Raven) and documents the presence of plants in 44 additional families compared to Sirbu et al. (2022). Each entry includes information on species taxonomy, location, year, person who recorded and identified the alien plant, geographical coordinates and taxon rank.

2.
Sci Total Environ ; 767: 144653, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33550064

ABSTRACT

The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.


Subject(s)
Hexachlorocyclohexane , Soil Pollutants , Biodegradation, Environmental , Hexachlorocyclohexane/analysis , Hexachlorocyclohexane/toxicity , Humans , Lysobacter , Mesorhizobium , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity , Sphingomonadaceae
3.
J Environ Manage ; 223: 286-296, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29933144

ABSTRACT

Current physical or chemical methods used for remediation of soils contaminated with hexachlocyclohexane (HCH), leave behind significant levels of pollutants. Given the compound's volatility and persistence in the environment, sites contaminated with HCH remain a concern for the population living in nearby areas. By making use of both the recovery capacity and the pollutant uptake ability of spontaneously growing vegetation, our study aimed to identify native plant species able to cover and moreover take up the HCH left at a former lindane production unit in Turda, Romania. The results showed that dominant species across the study site like Lotus tenuis, Artemisia vulgaris or Tanacetum vulgare, were capable of taking up HCH in their tissues, according to different patterns that combined at the scale of the plant community. Regardless of the proximity of the HCH contamination hotspots, the development of the plant cover was characteristic for vegetation succession on disturbed soils of the Central European region. Finally, we conclude that plant species which grow spontaneously at the HCH contaminated site in Turda and are capable of taking up the pollutant, represent a self-sustainable and low maintenance phytomanagement approach that would allow for the reintegration of the site in the urban or industrial circuit and nevertheless would reduce the toxicity risk to the neighboring human inhabitants.


Subject(s)
Biodegradation, Environmental , Plants , Soil Pollutants , Hexachlorocyclohexane , Romania , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...