Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Curr Opin Microbiol ; 78: 102436, 2024 04.
Article in English | MEDLINE | ID: mdl-38368839

ABSTRACT

Bacteria have evolved a variety of defence mechanisms to protect against mobile genetic elements, including restriction-modification systems and CRISPR-Cas. In recent years, dozens of previously unknown defence systems (DSs) have been discovered. Notably, diverse DSs often coexist within the same genome, and some co-occur at frequencies significantly higher than would be expected by chance, implying potential synergistic interactions. Recent studies have provided evidence of defence mechanisms that enhance or complement one another. Here, we review the interactions between DSs at the mechanistic, regulatory, ecological and evolutionary levels.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Bacteria/genetics , Biological Evolution , Bacteriophages/genetics
2.
Nat Chem Biol ; 20(6): 689-698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38167920

ABSTRACT

Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis. Our data show that the helicase-like domain has multiple roles. First, this domain stabilizes initial DNA interactions alongside the methyltransferase subunits. Second, it causes environmental changes in the flipped adenine base following hydrolysis of the first ATP. Finally, it remodels nucleoprotein interactions via constrained translocation of a ∼ 5 to 22-bp double stranded DNA loop. Initiation of DNA sliding requires 8-15 bp of DNA downstream of the motor, corresponding to the site of nuclease domain binding. Our data unify previous contradictory communication models for Type III enzymes.


Subject(s)
Adenosine Triphosphate , Diffusion , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Hydrolysis , DNA/metabolism , DNA/chemistry , DNA, Viral/metabolism , DNA, Viral/chemistry , DNA, Viral/genetics , Deoxyribonucleases, Type III Site-Specific/metabolism , Deoxyribonucleases, Type III Site-Specific/chemistry
3.
Nat Chem Biol ; 18(9): 1014-1022, 2022 09.
Article in English | MEDLINE | ID: mdl-35836018

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable 'clamped' Cas12a-DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3' CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by ~16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3' CRISPR RNA to downstream DNA.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , CRISPR-Cas Systems/genetics , Constriction , DNA/genetics , DNA Cleavage , Gene Editing , Nucleic Acid Conformation , RNA , RNA, Guide, Kinetoplastida/genetics
4.
Cell Host Microbe ; 30(1): 31-40.e5, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34932986

ABSTRACT

Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.


Subject(s)
Adaptive Immunity/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , CRISPR-Cas Systems/immunology , Bacteria/growth & development , Bacteria/immunology , Bacteriophages/genetics , Genome, Bacterial , Humans , Mutation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/immunology
5.
Nucleic Acids Res ; 49(20): e118, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34417616

ABSTRACT

Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates.


Subject(s)
DNA Cleavage , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods , DNA/chemistry , DNA/genetics , DNA Restriction Enzymes/metabolism , Nucleotide Motifs
6.
Curr Biol ; 30(19): R1189-R1202, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33022264

ABSTRACT

Like many organisms, bacteria and archaea have both innate and adaptive immune systems to defend against infection by viruses and other parasites. Innate immunity most commonly relies on the endonuclease-mediated cleavage of any incoming DNA that lacks a specific epigenetic modification, through a system known as restriction-modification. CRISPR-Cas-mediated adaptive immunity relies on the insertion of short DNA sequences from parasite genomes into CRISPR arrays on the host genome to provide sequence-specific protection. The discovery of each of these systems has revolutionised our ability to carry out genetic manipulations, and, as a consequence, the enzymes involved have been characterised in exquisite detail. In comparison, much less is known about the importance of these two arms of the defence for the ecology and evolution of prokaryotes and their parasites. Here, we review our current ecological and evolutionary understanding of these systems in isolation, and discuss the need to study how innate and adaptive immune responses are integrated when they coexist in the same cell.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Prokaryotic Cells/immunology , Archaea/genetics , Bacteria/genetics , Biological Evolution , Ecology , Evolution, Molecular , Immune System/immunology , Immune System/metabolism
7.
J Cell Sci ; 133(18)2020 09 16.
Article in English | MEDLINE | ID: mdl-32843580

ABSTRACT

Current methodologies for targeting the mitochondrial genome for research and/or therapy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. A molecular toolbox for CRISPR-mediated mitochondrial genome editing is desirable, as this could enable targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes. Such 'MitoCRISPR' systems described to date lack reproducibility and independent corroboration. We have explored the requirements for MitoCRISPR in human cells by CRISPR nuclease engineering, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of guide (g)RNA modifications for mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and effects on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Our data link mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary for MitoCRISPR.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Gene Editing , HeLa Cells , Humans , Mitochondria/genetics , Reproducibility of Results
8.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32496535

ABSTRACT

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Subject(s)
CRISPR-Cas Systems/genetics , DNA Cleavage , R-Loop Structures/genetics , RNA, Guide, Kinetoplastida/genetics , Aptamers, Nucleotide/genetics , Gene Editing , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida/ultrastructure , Ribonucleoproteins/genetics , Ribonucleoproteins/ultrastructure , Single Molecule Imaging , Streptococcus pyogenes/genetics
10.
Genes (Basel) ; 10(2)2019 02 22.
Article in English | MEDLINE | ID: mdl-30813348

ABSTRACT

Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with Streptococcus thermophilus DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.


Subject(s)
CRISPR-Cas Systems , R-Loop Structures , Bacterial Proteins/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , Endodeoxyribonucleases/metabolism
11.
Nucleic Acids Res ; 47(2): 868-882, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30521042

ABSTRACT

McrBC is one of the three modification-dependent restriction enzymes encoded by the Escherichia coli K12 chromosome. Amongst restriction enzymes, McrBC and its close homologues are unique in employing the AAA+ domain for GTP hydrolysis-dependent activation of DNA cleavage. The GTPase activity of McrB is stimulated by the endonuclease subunit McrC. It had been reported previously that McrB and McrC subunits oligomerise together into a high molecular weight species. Here we conclusively demonstrate using size exclusion chromatography coupled multi-angle light scattering (SEC-MALS) and images obtained by electron cryomicroscopy that McrB exists as a hexamer in solution. Furthermore, based on SEC-MALS and SAXS analyses of McrBC and the structure of McrB, we propose that McrBC is a complex of two McrB hexamers bridged by two subunits of McrC, and that the complete assembly of this complex is integral to its enzymatic activity. We show that the nucleotide-dependent oligomerisation of McrB precedes GTP hydrolysis. Mutational studies show that, unlike other AAA+ proteins, the catalytic Walker B aspartate is required for oligomerisation.


Subject(s)
DNA Restriction Enzymes/metabolism , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/metabolism , Cryoelectron Microscopy , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/ultrastructure , Escherichia coli Proteins/genetics , Escherichia coli Proteins/ultrastructure , Guanosine Triphosphate/metabolism , Mutation , Protein Multimerization , Scattering, Small Angle , X-Ray Diffraction
12.
Nucleic Acids Res ; 46(5): 2560-2572, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29471489

ABSTRACT

CglI is a restriction endonuclease from Corynebacterium glutamicum that forms a complex between: two R-subunits that have site specific-recognition and nuclease domains; and two H-subunits, with Superfamily 2 helicase-like DEAD domains, and uncharacterized Z1 and C-terminal domains. ATP hydrolysis by the H-subunits catalyses dsDNA translocation that is necessary for long-range movement along DNA that activates nuclease activity. Here, we provide biochemical and molecular modelling evidence that shows that Z1 has a fold distantly-related to RecA, and that the DEAD-Z1 domains together form an ATP binding interface and are the prototype of a previously undescribed monomeric helicase-like motor. The DEAD-Z1 motor has unusual Walker A and Motif VI sequences those nonetheless have their expected functions. Additionally, it contains DEAD-Z1-specific features: an H/H motif and a loop (aa 163-aa 172), that both play a role in the coupling of ATP hydrolysis to DNA cleavage. We also solved the crystal structure of the C-terminal domain which has a unique fold, and demonstrate that the Z1-C domains are the principal DNA binding interface of the H-subunit. Finally, we use small angle X-ray scattering to provide a model for how the H-subunit domains are arranged in a dimeric complex.


Subject(s)
Corynebacterium glutamicum/enzymology , DNA Restriction Enzymes/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Crystallography, X-Ray , DNA/metabolism , DNA Helicases/chemistry , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , Models, Molecular , Mutation , Protein Domains , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Scattering, Small Angle
13.
Nucleic Acids Res ; 45(14): 8435-8447, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28854738

ABSTRACT

The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5'-GCCGC-3' site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes.


Subject(s)
Bacterial Proteins/metabolism , DEAD-box RNA Helicases/metabolism , DNA Cleavage , DNA Restriction Enzymes/metabolism , DNA/metabolism , Adenosine Triphosphate/metabolism , Base Sequence , Biocatalysis , Corynebacterium glutamicum/enzymology , DNA/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Models, Genetic
14.
Nucleic Acids Res ; 44(16): 7817-29, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27436287

ABSTRACT

The guanine (G)-tract of conserved sequence block 2 (CSB 2) in human mitochondrial DNA can result in transcription termination due to formation of a hybrid G-quadruplex between the nascent RNA and the nontemplate DNA strand. This structure can then influence genome replication, stability and localization. Here we surveyed the frequency of variation in sequence identity and length at CSB 2 amongst human mitochondrial genomes and used in vitro transcription to assess the effects of this length heterogeneity on the activity of the mitochondrial RNA polymerase, POLRMT. In general, increased G-tract length correlated with increased termination levels. However, variation in the population favoured CSB 2 sequences which produced efficient termination while particularly weak or strong signals were avoided. For all variants examined, the 3' end of the transcripts mapped to the same downstream sequences and were prevented from terminating by addition of the transcription factor TEFM. We propose that CSB 2 length heterogeneity allows variation in the efficiency of transcription termination without affecting the position of the products or the capacity for regulation by TEFM.


Subject(s)
Conserved Sequence/genetics , DNA, Mitochondrial/genetics , DNA-Directed RNA Polymerases/metabolism , Adenine/metabolism , Base Sequence , G-Quadruplexes , Genome, Mitochondrial , Humans , Mitochondrial Proteins , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics , Transcription Factors , Transcription Termination, Genetic
15.
Nucleic Acids Res ; 44(9): 4396-408, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26975655

ABSTRACT

Engineering restriction enzymes with new sequence specificity has been an unaccomplished challenge, presumably because of the complexity of target recognition. Here we report detailed analyses of target recognition by Type ISP restriction-modification enzymes. We determined the structure of the Type ISP enzyme LlaGI bound to its target and compared it with the previously reported structure of a close homologue that binds to a distinct target, LlaBIII. The comparison revealed that, although the two enzymes use almost a similar set of structural elements for target recognition, the residues that read the bases vary. Change in specificity resulted not only from appropriate substitution of amino acids that contacted the bases but also from new contacts made by positionally distinct residues directly or through a water bridge. Sequence analyses of 552 Type ISP enzymes showed that the structural elements involved in target recognition of LlaGI and LlaBIII were structurally well-conserved but sequentially less-conserved. In addition, the residue positions within these structural elements were under strong evolutionary constraint, highlighting the functional importance of these regions. The comparative study helped decipher a partial consensus code for target recognition by Type ISP enzymes.


Subject(s)
Bacterial Proteins/chemistry , DNA Restriction Enzymes/chemistry , Amino Acid Sequence , Base Sequence , Catalytic Domain , Crystallography, X-Ray , DNA/chemistry , Hydrogen Bonding , Lactococcus lactis/enzymology , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Substrate Specificity
16.
Nucleic Acids Res ; 43(22): 10870-81, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26538601

ABSTRACT

DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding.


Subject(s)
Adenosine Triphosphate/metabolism , DNA/metabolism , Deoxyribonucleases, Type III Site-Specific/metabolism , Adenosine Triphosphatases/metabolism , DNA Cleavage , Hydrolysis , Kinetics , Surface Plasmon Resonance
17.
Nucleic Acids Res ; 43(21): 10430-43, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26507855

ABSTRACT

The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp.


Subject(s)
DNA Cleavage , DNA Restriction Enzymes/metabolism , DNA/chemistry , DNA/metabolism , DNA Footprinting , DNA Restriction Enzymes/chemistry , Enzyme Activation , Exodeoxyribonucleases , Models, Molecular
18.
Nat Chem Biol ; 11(11): 870-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26389736

ABSTRACT

Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission.


Subject(s)
Bacterial Proteins/chemistry , DNA Helicases/chemistry , DNA/chemistry , Endonucleases/chemistry , Lactococcus lactis/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Cleavage , DNA Helicases/genetics , DNA Helicases/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Lactococcus lactis/enzymology , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Nucleic Acids Res ; 42(22): 13887-96, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25429977

ABSTRACT

The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA Cleavage , DNA Restriction Enzymes/metabolism , Adenosine Triphosphate/metabolism , Corynebacterium glutamicum/enzymology , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/isolation & purification , DNA/metabolism , DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/isolation & purification , Hydrolysis , Neisseria gonorrhoeae/enzymology , Nucleotides/metabolism , Protein Structure, Tertiary
20.
Nucleic Acids Res ; 42(19): 12082-91, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25260590

ABSTRACT

We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction-modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host, upon generation of new sites by genome rearrangement/mutation or during homologous recombination between hemimethylated DNA. Using recombinant DNA and proteins in vitro, we demonstrate that ClpXP targets EcoKI HsdR during dsDNA translocation on circular DNA but not on linear DNA. Protein roadblocks did not activate HsdR proteolysis. We suggest that DNA translocation lifetime, which is elevated on circular DNA relative to linear DNA, is important to RA. To identify the ClpX degradation tag (degron) in HsdR, we used bioinformatics and biochemical assays to design N- and C-terminal mutations that were analysed in vitro and in vivo. None of the mutants produced a phenotype consistent with loss of the degron, suggesting an as-yet-unidentified recognition pathway. We note that an EcoKI nuclease mutant still produces cell death in a clpx- strain, consistent with DNA damage induced by unregulated motor activity.


Subject(s)
DNA/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Endopeptidase Clp/metabolism , Escherichia coli Proteins/metabolism , DNA Cleavage , DNA Restriction Enzymes/metabolism , DNA, Circular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...