Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 13(6): 523-529, 2021 06.
Article in English | MEDLINE | ID: mdl-33767362

ABSTRACT

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

2.
Small ; 16(4): e1905197, 2020 01.
Article in English | MEDLINE | ID: mdl-31894644

ABSTRACT

Plasmon-induced hot carriers enable dissociation of strong chemical bonds by visible light. This unusual chemistry has been demonstrated for several diatomic and small organic molecules. Here, the scope of plasmon-driven photochemistry is extended to biomolecules and the reactivity of proteins and peptides in plasmonic hot spots is described. Tip-enhanced Raman spectroscopy (TERS) is used to both drive the reactions and to monitor their products. Peptide backbone bonds are found to dissociate in the hot spot, which is reflected in the disappearance of the amide I band in the TER spectra. The observed fragmentation pathway involves nonthermal activation, presumably by dissociative capture of a plasmon-induced hot electron. This fragmentation pathway is known from electron transfer dissociation (ETD) of peptides in gas-phase mass spectrometry (MS), which suggests a general similarity between plasmon-induced photochemistry and nonergodic reactions triggered by electron capture. This analogy may serve as a design principle for plasmon-induced reactions of biomolecules.


Subject(s)
Electrons , Peptides , Amides/chemistry , Mass Spectrometry , Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Surface Plasmon Resonance
3.
Nano Lett ; 18(11): 6740-6749, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30277787

ABSTRACT

Plasmonic metal nanostructures can concentrate incident optical fields in nanometer-sized volumes, called hot spots. This leads to enhanced optical responses of molecules in such a hot spot but also to chemical transformations, driven by plasmon-induced hot carriers. Here, we employ tip-enhanced Raman spectroscopy (TERS) to study the mechanism of these reactions in situ at the level of a single hot spot. Direct spectroscopic measurements reveal the energy distribution of hot electrons, as well as the temperature changes due to plasmonic heating. Therefore, charge-driven reactions can be distinguished from thermal reaction pathways. The products of the hot-carrier-driven reactions are strikingly similar to the ones known from X-ray or e-beam-induced surface chemistry despite the >100-fold energy difference between visible and X-ray photons. Understanding the analogies between those two scenarios implies new strategies for rational design of plasmonic photocatalytic reactions and for the elimination of photoinduced damage in plasmon-enhanced spectroscopy.

4.
Small ; 12(35): 4821-4829, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27434680

ABSTRACT

Due to its well-defined topology and chemical structure, DNA could become a biological standard sample in the field of nanospectroscopy. Tip-enhanced Raman spectroscopy (TERS) provides new insights into individual DNA molecules immobilized on flat mica crystals. The high sensitivity of TERS is used to assess the chemical changes that appear in DNA upon different surface immobilization protocols.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Aluminum Silicates/chemistry , Microscopy, Atomic Force , Principal Component Analysis , Propylamines/chemistry , Reproducibility of Results , Silanes/chemistry , Spectrum Analysis, Raman
5.
Angew Chem Int Ed Engl ; 55(1): 213-7, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26768822

ABSTRACT

A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

6.
ACS Nano ; 9(4): 4252-9, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25803562

ABSTRACT

Synthetic covalent monolayer sheets and their subclass, two-dimensional polymers are of particular interest in materials science because of their special dimensionality which renders them very different from any bulk matter. However, structural analysis of such entities is rather challenging, and there is a clear need for additional analytical methods. The present study shows how tip-enhanced Raman spectroscopy (TERS) can be performed on monomer monolayers and the covalent sheets prepared from them by [4 + 4]-cycloaddition to explore rather complex structural and mechanistic issues. TERS is a surface analytical method that combines the high lateral resolution of scanning probe microscopy (SPM) with a greatly enhanced Raman scattering intensity. The high spatial resolution (<60 nm) and the significantly improved sensitivity (contrast factor of >4000) compared to confocal Raman microscopy provides new insights into the formation of this new and exciting material, namely significant consumption of the reactive units (anthracenes) and exclusion of the alternative [4 + 2]-cycloaddition. Moreover, due to the high lateral resolution, it was possible to find a first spectroscopic hint for step growth as the dominant mechanism in the formation of these novel monolayer sheets. In addition, TERS was used to get first insights into the phase behavior of a comonomer mixture.

7.
J Mol Recognit ; 25(5): 299-308, 2012 May.
Article in English | MEDLINE | ID: mdl-22528192

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a promising apoptotic agent that can selectively act on tumor cells. However, some cancer cells are resistant to TRAIL mediated apoptosis. In specific type of cells, sensitization by chemotherapeutic drugs may overcome the resistance to TRAIL induced apoptosis. In this work, atomic force microscopy (AFM) nanoindentation spectroscopy combined with fluorescence methods were used to investigate the biomechanical aspects of the resistance and unblocking of apoptosis in larynx carcinoma HEp2 cells treated with TRAIL. It is shown that there is a direct correlation between the increase in mechanical cell stiffness and the inhibition of apoptosis induced by TRAIL in HEp2 cells. Conversely, unblocking of apoptosis by sensitization of HEp2 cells with a chemotherapeutic drug Actinomycin D is related to the depolymerization of F-actin and to the decrease in the cell stiffness. Both effects, that is, changes in the mechanical stiffness of the cell and the inhibition of apoptotic pathway, are closely related to the Bcl-2 activity. Most probably, the depolymerization of F-actin results from downregulation of Rho protein, which in turn is accompanied by a lower activity of Bcl-2 and in consequence releases the intrinsic apoptotic channel. The presented results reveal a promising application of nanoindentation spectroscopy with an AFM tip as a novel tool for monitoring the processes of apoptosis inhibition.


Subject(s)
Apoptosis , Elasticity , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/pathology , Microscopy, Atomic Force , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Actins/metabolism , Antibiotics, Antineoplastic/pharmacology , Dactinomycin/pharmacology , Drug Therapy, Combination , Fluorescence , Humans , Laryngeal Neoplasms/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...