Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(34): 17201-17212, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37674655

ABSTRACT

Antioxidant composites based on nanozymes [manganese oxide microflakes (MnO2 MFs) and cerium oxide nanoparticles (CeO2 NPs)] were formulated by controlled heteroaggregation. The interparticle attraction via electrostatic forces was systematically tuned with surface functionalization by the poly(diallyldimethyl chloride) (PDADMAC) polyelectrolyte. The PDADMAC-coated MnO2 MFs (PMn) were heteroaggregated with oppositely charged CeO2 NPs to generate the Ce-PMn composite, while the PDADMAC-functionalized CeO2 NPs (PCe) were immobilized onto bare MnO2 MFs, resulting in the Mn-PCe composite. Both the adsorption of PDADMAC and the self-assembly of oppositely charged particles resulted in charge neutralization and charge reversal at appropriately high doses. The interparticle force regimes, the aggregation states, and the physicochemical properties of the relevant dispersions were also highly dependent on the dose of PDADMAC, as well as that of PDADMAC-functionalized metal oxides (PMO) enabling the fine-tuning and control of colloidal stability. The individual enzyme-like activity of either metal oxide was not compromised by PDADMAC adsorption and/or heteroaggregation, leading to the formation of broad-spectrum antioxidant composites exhibiting multiple enzyme-like activities such as superoxide dismutase, oxidase, and peroxidase-type functions. The low cost and ease of preparation, as well as controllable colloidal properties render such composites potential enzyme mimicking agents in various industrial fields, where processable antioxidant systems are needed.

2.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903085

ABSTRACT

In this study, calcium phosphate materials were obtained via a simple, eco-friendly wet synthesis method using hen eggshells as a calcium source. It was shown that Zn ions were successfully incorporated into hydroxyapatite (HA). The obtained ceramic composition depends on the zinc content. When doped with 10 mol % of Zn, in addition to HA and Zn-doped HA, DCPD (dicalcium phosphate dihydrate) appeared and its content increased with the increase in Zn concentration. All doped HA materials exhibited antimicrobial activity against S. aureus and E. coli. Nevertheless, fabricated samples significantly decreased preosteoblast (MC3T3-E1 Subclone 4) viability in vitro, exerting a cytotoxic effect which probably resulted from their high ionic reactivity.

4.
Chem Phys Lipids ; 248: 105236, 2022 10.
Article in English | MEDLINE | ID: mdl-36007625

ABSTRACT

In order to provide the fundamental information about the interactions of common anionic surfactants with the basic unsaturated phospholipids the influence of three cationic (dodecyltrimethylammonium bromide, DTAB; tetradecyltrimethylammonium bromide, TTAB and hexadecyltrimethylamonium bromide, CTAB) and one anionic (sodium dodecylsulfate, SDS) surfactants on the properties of the 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) layers was investigated. The studies proved that a tiny amount of the ionic surfactant added to the already synthesized liposome suspension is sufficient to change the zeta potential of the POPC and DOPC liposomes significantly. This impact increases with the surfactant concentration, the alkyl chain length of the surfactant and the degree of lipid saturation. Moreover, this effect is greater for the anionic surfactant than for the cationic one of the same alkyl chain length. The observed findings were confirmed in the course of the research carried out with the use of the corresponding Langmuir monolayers where the surface pressure - mean area isotherms, the compressibility modulus - surface pressure dependences, the monolayer penetration tests, the surface potential - mean molecular area isotherms and Brewster angle microscopy were discussed. It was found that the presence of the surfactants shifts the isotherms towards larger molecular area, to the higher extent for the SDS than DTAB. This effect increases with the increasing surfactant concentration in the subphase. Moreover, the investigated surfactants remain in the monolayer even at high surface pressure. Nevertheless, no effect on the morphology of the POPC and DOPC monolayers was detected from the BAM images. The surface potential and surface charge of the liposomes calculated on the basis of the zeta potential results reflected the interactions between the surfactant and the lipid layers.


Subject(s)
Liposomes , Surface-Active Agents , Bromides , Cations , Cetrimonium , Phospholipids , Phosphorylcholine , Quaternary Ammonium Compounds , Sodium
5.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160879

ABSTRACT

Calcium phosphate materials such as hydroxyapatite (HA) or tricalcium phosphate (ß-TCP) are highly attractive due to their multitude of applications in bone replacement as well as their environmental and ecological credentials. In this research, quail, hen, duck, and pigeon eggshells were used as a calcium source to obtain calcium phosphate materials via the environmentally friendly wet synthesis. Using the eggshells with the organic membrane, the biphasic calcium phosphate materials composed mainly of HA were obtained. The second mineral phase was ß-TCP in the case of using quail, hen, and pigeon eggshells and octacalcium phosphate (OCP) in the case of duck eggshells. The HA content in the obtained materials depended on the amount of membrane in the eggshells and decreased in the order of pigeon, duck, hen, and quail eggshells. The eggshell membrane removal from the eggshells caused the reduced content of HA and the presence of the more soluble ß-TCP or OCP phase in the obtained materials. The calcium ions release profile in the PBS buffer indicates the potential biomedical application of these materials.

6.
Biophys Chem ; 277: 106656, 2021 10.
Article in English | MEDLINE | ID: mdl-34274732

ABSTRACT

The water-soluble fraction of proteoglycan RS-89 isolated from the Rhodococcus opacus FCL89 and composed of 64.6% polysaccharide and 9.44% protein has been studied as regards its flocculating activity. The RS-89 polysaccharide component includes mannose, galactose and glucose at the molar ratio of 2.7: 1.3: 1. The basic factors affecting flocculating activity of the RS-89 have been established. Additionally, the kinetics of kaolin sedimentation without and with the bioflocculant was investigated. The presence of divalent metal ions had a positive effect on the flocculating activity of the RS-89. The addition of Ca2+ increased the RS-89 flocculating activity in comparison to the other studied metals. It was proved that the proteoglycan RS-89 achieved the highest flocculating activity at the concentration equal to 2 mg/L and in the presence of 10 mmol/L of Ca2+. The zeta potential values are less negative when there is an interaction between the kaolin particles and metal ions without the RS-89 in the tested systems. Therefore, the proposed mechanism to describe the proteoglycan interaction with kaolin particles in the presence of divalent ions includes charge neutralization and a bridging mechanism.


Subject(s)
Rhodococcus , Flocculation , Hydrogen-Ion Concentration , Proteoglycans
7.
Chem Phys Lipids ; 235: 105059, 2021 03.
Article in English | MEDLINE | ID: mdl-33539791

ABSTRACT

Surfactants are commonly found in today's world as an essential component of cleaning detergents, cosmetics and drug delivery systems. They can penetrate into lipid membranes, thus changing their properties. The aim of this paper is to compare the effect of addition of small amounts of cationic (DTAB) and anionic surfactants (SDS) with the same alkyl chain length on the zeta potential of DPPC liposomes with their influence on the corresponding DPPC monolayers. It was found that the addition of ionic surfactants with an initial concentration in the solution equal to 2.3, 4.5 and 9.1 µM to the liposome suspension changes their electrokinetic potential significantly. These changes increase with the increasing surfactant concentration and are greater for the anionic surfactant. This indicates the incorporation of surfactants into the structure of liposomes. Based on the analysis of π-area isotherms of DPPC monolayers it was proved that the ionic surfactant molecules are irreversibly integrated into the DPPC monolayer.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Surface-Active Agents/chemistry , Ions/chemistry , Liposomes/chemistry , Particle Size , Surface Properties
8.
Environ Sci Pollut Res Int ; 28(2): 1725-1733, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32856246

ABSTRACT

Using the hen eggshells (biowaste) as a source of calcium and an environmentally friendly approach, the nanopowder composed of 74% of hydroxyapatite (HA) and 26% of ß-tricalcium phosphate (ß-TCP) was obtained. Due to the maximum reduction of the stages associated with the use of chemicals and energy, this method can be considered as economically and environmentally friendly. A well-developed surface area and the negative zeta potential at pH above 3.5 indicate good adsorption properties of this material. The obtained material shows high adsorption capacity towards Cu2+ ions, i.e. 105.4 mg/g at pH 5. Good fit of the Langmuir adsorption model and the pseudo-second-order kinetic model may indicate chemical adsorption probably due to the electrostatic interactions between the Cu2+ cations and the negatively charged phosphate and hydroxyl groups on the material surface.


Subject(s)
Copper , Water Pollutants, Chemical , Adsorption , Animals , Calcium , Calcium Phosphates , Chickens , Copper/analysis , Female , Hydrogen-Ion Concentration , Ions , Kinetics , Water Pollutants, Chemical/analysis
9.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400242

ABSTRACT

The article presents the results of spectroscopic studies focused on a selected compound from the 1,3,4-thiadiazole group-2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thia-diazole (FABT)-in a micellar system formed by Triton X-100, a non-ionic detergent. Fluorescence measurements revealed the phenomenon of dual fluorescence whose emergence is related to the particular molecular organisation of the compound, which depends both on the concentration of the detergent and, most of all, the concentration of the compound itself. Dual fluorescence of FABT in a micellar system was observed for the compound dissolved in a methanol aqueous system, i.e., an environment wherein the dual fluorescence of the compound had never been reported before. Based on the interpretation of UV-Vis electronic absorption, resonance light scattering (RLS), emission and excitation fluorescence spectra, as well as measurements of dynamic light scattering (DLS) and Principal Component Analysis (PCA), we were able to relate the occurrence of this effect to the process of molecular aggregation taking place between FABT molecules in the micellar system in question. Results of fluorescence spectra measurements and time-correlated single photon counting (TCSPC) indicate that dual fluorescence occurs at detergent concentrations necessary to form micellar systems, which in turn facilitate the process of aggregation of FABT molecules. The correlation between the observed fluorescence effects and the previous measurements performed for analogues from this group suggests the possibility of charge transfer (CT) within the range of detergent concentrations wherein the aforementioned fluorescence effects are observed. It ought to be emphasised that this type of fluorescence effects are relatively easy to induce, which predisposes this groups of fluorophores as ideal fluorescence probes in the context of biological samples.


Subject(s)
Micelles , Spectrometry, Fluorescence , Thiadiazoles/chemistry , Dynamic Light Scattering , Principal Component Analysis , Spectrometry, Fluorescence/methods
10.
Chemosphere ; 203: 54-67, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29605749

ABSTRACT

Understanding of magnetic field (MF) effects observed during and after its action on water and aqueous solutions is still a controversial issue although the effects have been reported for at least half of century. The purpose of this paper was a brief review of the literature which deals with the magnetic force treatment effects. However, it is especially focused on the latest approaches, published mostly in the last decade which have developed our understanding of the mechanisms accompanying the field action. Generally, the changes in water structure via hydrogen bonding changes, as well as in intraclusters and between interclusters were taken into account, but the most remarkable progress was achieved in 2012 by Coey who applied the non-classical theory of nucleation mechanism of the formation of dynamically ordered liquid like oxyanion polymers (DOLLOP) to explain the magnetic field action. His criterion for the magnetic field effect to occur was experimentally verified. It was also proved that the gradient of the magnetic field is more important than the magnetic field strength itself. Some interesting approaches explaining an enhanced evaporation rate of water by MF are also discussed. More experimental results are needed for further verification of the DOLLOP theory to achieve a more profound understanding of the MF effects.


Subject(s)
Magnetics , Water Purification/methods , Water/chemistry
11.
Adv Colloid Interface Sci ; 249: 321-330, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28457501

ABSTRACT

The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.


Subject(s)
Bone Substitutes/chemistry , Coated Materials, Biocompatible/chemistry , Drug Delivery Systems/methods , Durapatite/chemistry , Tissue Engineering/methods , Animals , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Bone Substitutes/pharmacology , Bone and Bones/pathology , Bone and Bones/surgery , Coated Materials, Biocompatible/pharmacology , Drug Compounding/methods , Durapatite/pharmacology , Humans , Nanoparticles/chemistry , Porosity , Prostheses and Implants , Tissue Scaffolds
12.
Bioresour Technol ; 225: 113-120, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888727

ABSTRACT

The adsorption of Cd(II), Pb(II), Ni(II), Co(II) and Cr(VI) ions on the extracellular polymeric substances (EPS) obtained from bacterial strain Rhodococcus opacus and Rhodococcus rhodochrous was investigated by the static sorption method. Influence of pH, time and temperature were studied. It was found that the influence of the pH value and time of adsorption depends on the type of adsorbed ions. For all investigated systems an increase of temperature above 35°C reduces adsorption. However, the static sorption capacities values oscillate around 1.5mmol/g, independently of the type of the studied metal ions. The adsorption mechanism of studied metal ions onto the tested EPSs seems to be very complex and it is probably due to an electrostatic attraction, a surface complex formation and chemical interaction between the metal ions and the functional groups (mainly hydroxyl, acetamido or amino groups) of bacterial extracellular biopolymers.


Subject(s)
Biopolymers/chemistry , Metals, Heavy/chemistry , Rhodococcus/chemistry , Adsorption , Cadmium/chemistry , Cadmium/isolation & purification , Chromium/chemistry , Chromium/isolation & purification , Cobalt/chemistry , Cobalt/isolation & purification , Hydrogen-Ion Concentration , Lead/chemistry , Lead/isolation & purification , Metals, Heavy/isolation & purification , Nickel/chemistry , Nickel/isolation & purification , Photoelectron Spectroscopy , Rhodococcus/metabolism , Spectroscopy, Fourier Transform Infrared , Temperature , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
13.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 207-215, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770882

ABSTRACT

Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning.


Subject(s)
Titanium/chemistry , Adhesiveness , Alloys , Microscopy, Atomic Force , Optical Phenomena , Surface Tension , Thermodynamics , Water/chemistry
14.
Colloid Polym Sci ; 294: 409-419, 2016.
Article in English | MEDLINE | ID: mdl-26855469

ABSTRACT

After an hour contact with a phospholipase A2 (PLA2) solution, only the outer leaflet of the dipalmitoylphosphatidylcholine (DPPC) bilayers supported on mica surface underwent hydrolysis whose products, i.e., palmitic acid and lysophospholipid, accumulated on the bilayer surface. Only calcite was present on the bare mica and enzymatically unmodified and modified supported DPPC bilayers soaked for 2 weeks at 25 and 37 °C in a solution of initial pH equals to 7.4 and 9.2 containing calcium and bicarbonate ions at their concentrations about those of human blood plasma. The DPPC bilayers accelerate the crystal growth at lower pH and favors CaCO3 nucleation at higher pH. Enzymatic modification of bilayers does not affect crystal morphology and its organization on the examined surface but causes a slight crystal size increase at lower pH and significantly reduces crystal size at alkaline pH. The temperature increase leads to the formation of bigger crystals under physiological pH and has almost no effect on crystal size at alkaline pH. The obtained results are probably attributed to Ca2+ interaction with a specific polar site on the surface of the membrane and DPPC hydrolysis products acting as nucleation centers.

15.
Mater Sci Eng C Mater Biol Appl ; 40: 373-81, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24857505

ABSTRACT

Dipalmitoylphosphatidylcholine (DPPC) mono- and bilayers supported on mica surface were soaked for two weeks in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. Two solutions were investigated: with and without Tris. The experiment was conducted at 20°C and at a physiological temperature equal to 37°C. Raman spectroscopy was used for the characterization of the precipitated phosphate minerals. These studies may provide information about the physiological mineralization of cell membranes that are mainly composed of phospholipids. Findings from these experiments suggest that the DPPC bilayers enhance the formation of less soluble phosphate forms especially at a temperature of 37°C. In the solution without Tris temperature increase gives more mineral deposits. It is probably the hydrogen interactions between phosphate groups of the phospholipid and hydroxyl groups from Tris that lower exposure of the phosphate group to interact with calcium ions.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Calcium Phosphates/chemistry , Lipid Bilayers/chemistry , Aluminum Silicates/chemistry , Body Fluids/chemistry , Calcium Phosphates/blood , Humans , Surface Properties , Temperature
16.
J Colloid Interface Sci ; 361(1): 288-92, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21652046

ABSTRACT

We present the results of systematic studies of phenol adsorption on closed commercially available, unmodified carbon nanotubes. Phenol adsorption is determined by the value of tube-specific surface area, the presence of small amount of surface groups influence adsorption only in very small amount. Phenol can be applied as a probe molecule for comparative analysis of tube surface areas. Tube curvature influences adsorption from solution, i.e., we observe increasing adsorption energy (and slower desorption process) with the decrease in tube curvature. This is in full accordance with molecular simulation results.

17.
J Colloid Interface Sci ; 353(1): 281-9, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20932536

ABSTRACT

The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration. The results indicate that the phospholipid is adsorbed vertically on the plates, exposing alternately its polar head and non-polar hydrocarbon chains in successive layers. On the other hand, experiments conducted on glass plates prior hydrophobized by contact with n-tetradecane suggest that DPPC molecules may to some extent dissolve in the relatively thick n-alkane film and then expose their polar heads over the film surface thus producing polar electron-donor interactions. The effect of both DPPC and dioleoylphosphatidylcholine (DOPC) on the electrokinetic potential of silica spheres confirms adsorption of the phospholipids, leading to a decrease in the (originally negative) zeta potential of silica and even reversal of its sign to positive at acidic pH. Hydrophobic interactions between phospholipid molecules in the medium and those already adsorbed may explain the overcharging. The adsorption of neutral phospholipids may reduce the zeta potential as a consequence of the shift of the electrokinetic or slip plane. The effect is more evident in the case of DOPC, suggesting a less efficient packing of this phospholipid because of the presence of double bonds in its molecule, which in fact is well known.


Subject(s)
Glass/chemistry , Phospholipids/chemistry , Silicon Dioxide/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Static Electricity , Surface Properties
18.
J Colloid Interface Sci ; 316(2): 996-1002, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17897662

ABSTRACT

Water and electrolyte solutions were exposed for 5 min to a weak static magnetic field (B = 15 mT). Their conductivity and the amount of evaporated water were then measured as a function of time. Simultaneously, these quantities were determined for magnetically untreated samples, as reference systems. It was found that a magnetic field influences these two parameters and their changes depend on the thermodynamic functions of hydration of these ions. A roughly linear change in conductivity versus 'scaled' functions was obtained. On this basis it was concluded that the magnetic field causes changes in the hydration shells of the ions.

19.
Langmuir ; 21(18): 8114-22, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16114911

ABSTRACT

Properties of calcium carbonate precipitated from aqueous solutions of CaCl(2) and Na(2)CO(3) in the presence of sodium dodecyl sulfate (SDS) and S-S 0.1 T magnetic field (MF) were studied. The nucleation and precipitation processes of CaCO(3) were investigated by pH and zeta potential measurements at 20 +/- 1 degrees C up to 2 h after mixing the solutions. Also the amounts of calcium carbonate deposited on the glass surfaces and its structure were examined. It was found that SDS influences the kinetics of precipitation, crystallographic forms, and crystal size of CaCO(3). The SDS effects are more pronounced in MF presence. A small amount of SDS accelerates transformation of vaterite into calcite, whereas increasing surfactant concentration moderates such a transformation. On the other hand, in all the systems, MF in the presence of SDS causes a slower transformation of vaterite into calcite. These effects are reflected in pH and zeta potential changes, although there is no clear dependence between the SDS amount present during the precipitation and changes of the parameters investigated. It seems that MF effect is most significant at a defined optimal SDS concentration. The results, however, do not allow suggestion of any detailed mechanism of the field interaction.


Subject(s)
Calcium Carbonate/chemistry , Magnetics , Sodium Dodecyl Sulfate/chemistry , Adhesiveness , Chemical Precipitation , Crystallization , Glass , Hydrogen-Ion Concentration , Water/chemistry
20.
Water Res ; 37(19): 4685-92, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14568055

ABSTRACT

Deposition of in situ precipitated calcium carbonate from Na(2)CO(3) and CaCl2 solutions on different substrates, i.e. stainless steel, copper, aluminium, and glass, was investigated at different temperatures, 20 degrees C, 40 degrees C, 60 degrees C and 80 degrees C, both in the absence and presence of S-S 0.1T magnetic field (MF). It was found that in quiescent conditions during 2h the amounts deposited firmly on the surfaces decreased with increasing temperature. If MF was present the deposition was reduced at all temperatures, and depended on the nature of the substrate. The largest MF effect was found on glass at 60 degrees C, which amounted 50% reduction of the deposit. However, at 80 degrees C no deposition was found in the presence of MF on aluminium surface. At this temperature the reproducibility of the experiments was poor, and an additional effect due to the metal surface corrosion (especially that of aluminium and copper) may be thought in alkaline environment of the experiments (pH ca. 10). Based on optical microscope photographs, it was concluded that the amounts of crystallographic forms of CaCO3 depended on the nature of substrate on which the precipitation and then the adhesion took place. To some extent the ratios of CaCO3 forms precipitated were different in the bulk phase than on the substrate surfaces at the same temperature, and this conclusion was based on the X-ray diffractograms. Some possible mechanisms causing MF effects are discussed.


Subject(s)
Calcium Carbonate/chemistry , Aluminum/chemistry , Calcium Chloride/chemistry , Carbonates/chemistry , Chemical Precipitation , Copper/chemistry , Glass/chemistry , Magnetics , Steel/chemistry , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...