Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 25(3): e202300771, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38009755

ABSTRACT

Green nanostructured fluids (GNFs), specifically water-in-oil nanoemulsions (w/o NEs), were investigated as professional "brush on, wipe off" nanodetergents for the effective removal of various challenging graffiti coatings. The efficacy of the advanced nanodetergents in eradicating resilient graffiti coatings was evaluated using various methods to assess the surface properties of forming graffiti coatings. The surface properties of these coatings were examined by assessing their wettability by water, surface free energy, and topography to obtain information on the intermolecular interactions with the nanodetergent during the wetting and graffiti removal process. Our findings revealed significant variations in the coating removal rate and efficacy of green nanostructured fluids, which are stabilized using surfactants derived from saccharides or amino acids. A water-in-oil nanoemulsion, stabilized by caprylyl/capryl glucoside, demonstrated exceptional efficiency at cleaning graffiti paints based on alkyd resin and containing various additives such as nitrocellulose or bitumen, from any hard surface within a short time period. However, a w/o NE, stabilized by sodium cocoyl glycinate, also showed effective removal of graffiti paints containing durable bitumen, albeit at a slower rate on. These green nanostructured fluids can be used as specific nanodetergents for the comprehensive removal of various graffiti coatings, but require a specified action time to prevent damage to the original substrate beneath the paint coating.

2.
Chemphyschem ; 25(4): e202300758, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38116981

ABSTRACT

The design of novel polymeric carrier systems with functional coatings is of great interest for delivering various bioactive molecules. Microcapsules coated with polyelectrolyte (PE) films provide additional functionality and fine-tuning advantages essential for controlled drug release. We developed hydrogel microcarriers coated with functional PE films with encapsulated substances of natural origin, resveratrol (RES), curcumin (CUR), and epigallocatechin gallate (EGCG), which have cytotoxic and chemopreventive properties. Alginate (ALG) based microparticles were loaded with phytopharmaceuticals using the emulsification method, and then their surface was modified with PE coatings, such as chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). The morphology and mean diameter of microcarriers were characterised by scanning electron microscopy, encapsulation efficiency was determined by UV-Vis spectroscopy, whereas the physicochemical properties of functional PE layers were studied using quartz crystal microbalance with dissipation monitoring and streaming potential measurements. The release profiles of active compounds from the hydrogel microparticles were described using the Peppas-Sahlin model. The cytotoxic effect of designed delivery systems was studied by evaluating their impact on the proliferation, mitochondrial metabolic function, and lipid peroxidation level of 5637 human bladder cancer cells. The present work demonstrates that the physicochemical and biological features of fabricated microcarriers can be controlled by the type of encapsulated anti-cancer agent and PE coating.


Subject(s)
Alginates , Antineoplastic Agents , Humans , Polyelectrolytes/chemistry , Alginates/chemistry , Hydrogels , Polymers , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL
...