Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Molecules ; 28(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37959853

ABSTRACT

For the first time, organic light-emitting diodes (OLEDs) based on bis(8-hydroxyquinoline) zinc with a styryl group (ZnStq) dispersed in poly(N-vinylcarbazole) matrix (ZnStq_R:PVK, where R = H, Cl, OCH3) were fabricated. The ZnStq_R:PVK films made via the spin-coating method were used as the active layer in these devices. The produced OLEDs showed strong electroluminescence with yellow emissions at 590, 587 and 578 nm for the ZnStq_H:PVK, ZnStq_Cl:PVK and ZnStq_OCH3:PVK, respectively. For all the studied thin films, the main photoluminescence emission bands were observed between 565 and 571 nm. The OLED with the ZnStq_OCH3:PVK layer with a narrow electroluminescence spectrum was found to have sufficient color purity to produce ultra-high-resolution displays with reduced power consumption (full width at half maximum of 59 nm, maximum brightness of 2244 cd/m2 and maximum current efficiency of 1.24 cd/A, with a turn-on voltage of 6.94 V and a threshold voltage of 7.35 V). To characterize the photophysical properties of the active layer, the ZnStq_R:PVK layers samples were additionally deposited on glass and silicon substrates. We found that the obtained results predestine ZnStq_R:PVK layers for use in the lighting industry in the future.

2.
ACS Appl Mater Interfaces ; 15(30): 36076-36085, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37466273

ABSTRACT

Silicon has the potential to improve lithium-ion battery (LIB) performance substantially by replacing graphite as an anode. The sustainability of such a transformation, however, depends on the source of silicon and the nature of the manufacturing process. Today's silicon industry still overwhelmingly depends on the energy-intensive, high-temperature carbothermal reduction of silica─a process that adversely impacts the environment. Rather than use conventional thermoreduction alone to break Si-O bonds, we report the efficient conversion of SiO2 directly to Mg2Si by a microwave-induced Mg plasma within 2.5 min at merely 200 W under vacuum. The underlying mechanism is proposed, wherein electrons with enhanced kinetics function readily as the reductant while the "bombardment" from Mg cations and electrons promotes the fast nucleation of Mg2Si. The 3D nanoporous (NP) Si is then fabricated by a facile thermal dealloying step. The resulting hierarchical NP Si anodes deliver stable, extended cycling with excellent rate capability in Li-ion half-cells, with capacities several times greater than graphite. The microwave-induced metal plasma (MIMP) concept can be applied just as efficiently to the synthesis of Mg2Si from Si, and the chemistry should be extendable to the reduction of multiple metal(loid) oxides via their respective Mg alloys.

3.
Polymers (Basel) ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36235987

ABSTRACT

The aim of the study was to present the influence of various styrylquinoline (StQ) substituents on the luminescence, structural, and optical properties of StQ-containing copolymers. StQ-containing copolymers were synthesized by free-radical thermoinitiated polymerization. The calculations of the copolymerization ratios for the obtained copolymers were based on the basis of the integrated peak areas of the 1H NMR spectra in CDCl3. The luminescence measurements show that the change in the nature of the electron-donating and electron-withdrawing of the substituent shifts the emission band to longer wavelengths and causes a transition from blue fluorescence to green or yellow and orange (or even white), regardless of the electronic nature of the introduced substituent group. The structural properties were measured by Fourier-Transform Infrared (FTIR) and Raman spectroscopies. For all of the compounds, we observed similarities in the bands in FTIR and Raman measurements. The optical parameters were obtained from the absorbance measurements. Additionally, Scanning Electron Microscopy (SEM) was used to study the surface topography of the thin layers on the glass substrate. The SEM images confirm that we obtained smoother layers for two copolymers. The computational Density Functional Theory (DFT) analysis fully supports the beneficial features of the analyzed systems for their applications in optoelectronic devices. Based on the obtained results, it can be concluded that all of the studied styrylquinolines are promising materials for applications in organic light-emitting diodes (OLEDs). However, COP1 with an OCH3 donor substituent possess a wider luminescence band, and its layer is smoother and more transparent.

4.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232360

ABSTRACT

The work presents the effect of annealing on the change of polycrystalline α and ß phases of copper and nickel phthalocyanines. We have found that this process has a great influence on the optical properties of the vapor-deposited layers. The performed measurements showed that for various forms of MPc, the values of the refractive index and the extinction coefficient increased, and consequently, so did the absorption coefficient. The AFM images taken showed that the values before and after heating are morphologically different. Raman measurements showed that the band at about 1526 cm-1 (B1g symmetry) has higher intensity for the α form than for the ß form. The intensity of this band is related to changing the form of phthalocyanine from α to ß. Our measurements have shown that by changing the annealing temperature of the layers, we change their optical properties. As a consequence, we change their optoelectronic parameters, adjusting them to the requirements of new optoelectronic devices, such as solar cells, sensors, displays and OLEDs.


Subject(s)
Nickel , Organometallic Compounds , Copper/chemistry , Hot Temperature , Indoles , Nickel/chemistry , Organometallic Compounds/chemistry
5.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885447

ABSTRACT

Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of produced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer (XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε˜> as well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton (SPP). The composition and purity of the produced films were analysed using X-ray photoelectron spectroscopy (XPS).

6.
Materials (Basel) ; 14(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640273

ABSTRACT

Titanium dioxide films, about 200 nm in thickness, were deposited using the e-BEAM technique at room temperature and at 227 °C (500K) and then annealed in UHV conditions (as well as in the presence of oxygen (at 850 °C). The fabricated dielectric films were examined using X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and spectroscopic ellipsometry. The applied experimental techniques allowed us to characterize the phase composition and the phase transformation of the fabricated TiO2 coatings. The films produced at room temperature are amorphous but after annealing consist of anatase crystallites. The layers fabricated at 227 °C contain both anatase and rutile phases. In this case the anatase crystallites are accumulated near the substrate interface whilst the rutile crystallites were formed closer to the surface of the TiO2 film. It should be emphasized that these two phases of TiO2 are distinctly separated from each other.

7.
J Phys Chem B ; 125(37): 10629-10638, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34499491

ABSTRACT

New materials based on methacrylic polymers modified with 1-(4-nitrophenyl)piperazine side chains, differing in the distance of the chromophore from the polymer main chain and/or the separation between the chromophoric units in the chain, are obtained and characterized in terms of their potential applications in optoelectronic devices. The surface, structural, and optical properties of the investigated materials are determined using atomic force microscopy, spectroscopic ellipsometry combined with transmission measurements, Raman and Fourier transform infrared spectroscopy, as well as cyclic voltammetry. The relevant model systems are additionally analyzed with quantum chemical density functional theory calculations in order to enable the generalization of the structure-photophysical property relationships for the optimization of the material features. It is found that the structural modification of the material, relying on the transit of the piperazine moiety away from the main polymer chain, leads to the hypsochromic shift of the absorption spectrum. Moreover, the lowest refractive index values are obtained for the polymer with a distant ethylene group in the side-chains and increased separation between the piperazine units. It was shown that the optical energy band gaps of the investigated piperazine-containing polymers are in the range from 2.73 to 2.81 eV, which reveals their promising potential for the advances in photovoltaics, field effect transistors, or electrochromic devices as an alternative for other widely applied polymer materials.

8.
Molecules ; 26(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34443514

ABSTRACT

Herein we describe an alternative strategy to achieve the preparation of nanoscale Cu3N. Copper(II) oxide/hydroxide nanopowder precursors were successfully fabricated by solution methods. Ammonolysis of the oxidic precursors can be achieved essentially pseudomorphically to produce either unsupported or supported nanoparticles of the nitride. Hence, Cu3N particles with diverse morphologies were synthesized from oxygen-containing precursors in two-step processes combining solvothermal and solid-gas ammonolysis stages. The single-phase hydroxochloride precursor, Cu2(OH)3Cl was prepared by solution-state synthesis from CuCl2·2H2O and urea, crystallising with the atacamite structure. Alternative precursors, CuO and Cu(OH)2, were obtained after subsequent treatment of Cu2(OH)3Cl with NaOH solution. Cu3N, in the form of micro- and nanorods, was the sole product formed from ammonolysis using either CuO or Cu(OH)2. Conversely, the ammonolysis of dicopper trihydroxide chloride resulted in two-phase mixtures of Cu3N and the monoamine, Cu(NH3)Cl under similar experimental conditions. Importantly, this pathway is applicable to afford composite materials by incorporating substrates or matrices that are resistant to ammoniation at relatively low temperatures (ca. 300 °C). We present preliminary evidence that Cu3N/SiO2 nanocomposites (up to ca. 5 wt.% Cu3N supported on SiO2) could be prepared from CuCl2·2H2O and urea starting materials following similar reaction steps. Evidence suggests that in this case Cu3N nanoparticles are confined within the porous SiO2 matrix.

9.
Materials (Basel) ; 14(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34300953

ABSTRACT

AuSn and AuSn2 thin films (5 nm) were used as precursors during the formation of semiconducting metal oxide nanostructures on a silicon substrate. The nanoparticles were produced in the processes of annealing and oxidation of gold-tin intermetallic compounds under ultra-high vacuum conditions. The formation process and morphology of a mixture of SnO2 and Au@SnOx (the core-shell structure) nanoparticles or Au nanocrystalites were carefully examined by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy (EDX). The annealing and oxidation of the thin film of the AuSn intermetallic compound led to the formation of uniformly distributed structures with a size of ∼20-30 nm. All of the synthesized nanoparticles exhibited a strong absorption band at 520-530 nm, which is typical for pure metallic or metal oxide systems.

10.
ACS Appl Mater Interfaces ; 13(11): 13400-13409, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33715348

ABSTRACT

Improvements in the thermoelectric performance of n-type Bi2Te3 materials to more closely match their p-type counterparts are critical to promote the continued development of bismuth telluride thermoelectric devices. Here the unconventional heteroatom dopant, niobium, has been employed as a donor in Bi2Te3. Nb substitutes for Bi in the rhombohedral Bi2Te3 structure and exhibits multiple roles in its modulation of electrical transport and defect-induced phonon scattering. The carrier concentration is significantly increased as electrons are afforded by aliovalent doping and formation of vacancies on the Te sites. In addition, incorporation of Nb in the pseudoternary Bi2-xNbxTe3-δ system increases the effective mass, m*, which is consistent with cases of "conventional" elemental doping in Bi2Te3. Lastly, inclusion of Nb induces both point and extended defects (tellurium vacancies and dislocations, respectively), enhancing phonon scattering and reducing the thermal conductivity. As a result, an optimum zT of 0.94 was achieved in n-type Bi0.92Nb0.08Te3 at 505 K, which is dramatically higher than an equivalent undoped Bi2Te3 sample. This study suggests not only that is Nb an exciting and novel electron dopant for the Bi2Te3 system but also that unconventional dopants might be utilized with similar effects in other chalcogenide thermoelectrics.

11.
Materials (Basel) ; 14(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525491

ABSTRACT

Copper nitride nanowire arrays were synthesized by an ammonolysis reaction of copper oxide precursors grown on copper surfaces in an ammonia solution. The starting Cu films were deposited on a silicon substrate using two different methods: thermal evaporation (30 nm thickness) and electroplating (2 µm thickness). The grown CuO or CuO/Cu(OH)2 architectures were studied in regard to morphology and size, using electron microscopy methods (SEM, TEM). The final shape and composition of the structures were mostly affected by the concentration of the ammonia solution and time of the immersion. Needle-shaped 2-3 µm long nanostructures were formed from the electrodeposited copper films placed in a 0.033 M NH3 solution for 48 h, whereas for the copper films obtained by physical vapor deposition (PVD), well-aligned nano-needles were obtained after 3 h. The phase composition of the films was studied by X-ray diffraction (XRD) and selected area electron diffraction (SAED) analysis, indicating a presence of CuO and Cu(OH)2, as well as Cu residues. Therefore, in order to obtain a pure oxide film, the samples were thermally treated at 120-180 °C, after which the morphology of the structures remained unchanged. In the final stage of this study, Cu3N nanostructures were obtained by an ammonolysis reaction at 310 °C and studied by SEM, TEM, XRD, and spectroscopic methods. The fabricated PVD-derived coatings were also analyzed using a spectroscopic ellipsometry method, in order to calculate dielectric function, band gap and film thickness.

12.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009151

ABSTRACT

Diamond is a very interesting material with a wide range of properties, making it highly applicable, for example, in power electronics, chemo- and biosensors, tools' coatings, and heaters. Due to the high demand for this innovative material based on the properties it is already expected to have, it is important to obtain homogeneous diamond layers for specific applications. Doping is often chosen to modify the properties of layers. However, there is an alternative way to achieve this goal and it is shown in this publication. The presented research results reveal that the change in methanol content during the Hot Filament Chemical Vapour Deposition (HF CVD) process is a sufficient factor to tune the properties of deposited layers. This was confirmed by analysing the properties of the obtained layers, which were determined using Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and an atomic force microscope (AFM), and the results were correlated with those of X-ray photoelectron spectroscopy (XPS). The results showed that the increasing of the concentration of methanol resulted in a slight decrease in the sp3 phase content. At the same time, the concentration of the -H, -OH, and =O groups increased with the increasing of the methanol concentration. This affirmed that by changing the content of methanol, it is possible to obtain layers with different properties.

13.
Materials (Basel) ; 13(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784875

ABSTRACT

Zinc oxide films have been fabricated by the electron beam physical vapour deposition (PVD) technique. The effect of substrate temperature during fabrication and annealing temperature (carried out in ultra high vacuum conditions) has been investigated by means of atomic force microscopy, scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. It was found that the layer deposited at room temperature is composed of Zn and ZnO crystallites with a number of orientations, whereas those grown at 100 and 200 ∘C consist of ZnO grains and exhibit privileged growth direction. Presented results clearly show the influence of ZnO decomposition and segregation of Zn atoms during evaporation and post-deposition annealing on microstructure and optical properties of zinc oxide films.

14.
Materials (Basel) ; 13(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512766

ABSTRACT

Zinc oxide nanoparticles were prepared from Zn5(CO3)2(OH)6 precursor, capped with poly(vinylpyrrolidone) (PVP), and annealed at 600 °C. The obtained powders were characterized by a powder X-ray diffraction (PXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy (UV-vis), Raman spectroscopy, infrared spectroscopy (IR), thermal analysis (TGA/DTA), and third-order nonlinear (NL) optical measurement. Morphological evaluation by TEM and SEM measurements indicated that the precursor micro-particles are ball-shaped structures composed of plates with a thickness of approximately 10 nm. ZnO thin films, as well as ZnO/polymer multilayer layouts, were obtained by wet chemical methods (spin- and dip-coating). Surface topography and morphology of the obtained films were studied by SEM and AFM microscopy. Films with uniformly distributed ZnO plates, due to the erosion of primary micro-particles were formed. The fabricated specimens were also analyzed using a spectroscopic ellipsometry in order to calculate dielectric function and film thickness.

15.
Materials (Basel) ; 13(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397117

ABSTRACT

The purpose of this study is to examine the microstructure and micromechanical properties of pulsed-laser irradiated stainless steel. The laser marking was conducted for AISI 304 and AISI 316 stainless steel samples through a Nd:YAG (1064 nm) laser. The influence of process parameters such as the pulse repetition rate and scanning speed have been considered. The microstructures of obtained samples were analyzed using confocal optical microscopy (COM). The continuous stiffness measurements (CSM) technique was applied for nanoindentional hardness and elastic modulus determination. The phase compositions of obtained specimens were characterized by X-ray diffraction (XRD) and confirmed by Raman spectroscopy. The results revealed that surface roughness is directly related to overlapping distance and the energy provided by a single pulse. The hardness of irradiated samples changes significantly with the indentation depth. The instrumental hardness HIT and elastic modulus EIT drop sharply with the rise of the indentation depth. Thus, the hardness enhancement can be observed as the indentation depth varies between 100-1000 nm for all exanimated samples. The maximum values of HIT and EIT were evaluated for the region of small depths (100-200 nm). The XRD results reveal the presence of iron and chromium oxides due to irradiation, which indicates a surface hardening effect.

16.
New Phytol ; 195(4): 894-911, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22738163

ABSTRACT

The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is dependent on type III effectors (T3Es) that are injected into plant cells by a type III secretion system and interfere with cellular processes to the benefit of the pathogen. In this study, we analyzed eight T3Es from Xcv strain 85-10, six of which were newly identified effectors. Genetic studies and protoplast expression assays revealed that XopB and XopS contribute to disease symptoms and bacterial growth, and suppress pathogen-associated molecular pattern (PAMP)-triggered plant defense gene expression. In addition, XopB inhibits cell death reactions induced by different T3Es, thus suppressing defense responses related to both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking. Interestingly, a XopB point mutant derivative was defective in the suppression of ETI-related responses, but still interfered with vesicle trafficking and was only slightly affected with regard to the suppression of defense gene induction. This suggests that XopB-mediated suppression of PTI and ETI is dependent on different mechanisms that can be functionally separated.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/genetics , Plant Immunity , Xanthomonas campestris/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Bacterial Proteins/genetics , Cell Death , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Genes, Bacterial/genetics , Genetic Association Studies , Golgi Apparatus/metabolism , Plant Cells/microbiology , Plant Immunity/genetics , Plant Proteins/metabolism , Protein Transport/genetics , Solanaceae/cytology , Solanaceae/microbiology , Virulence/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity
17.
New Phytol ; 187(4): 1058-1074, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20609114

ABSTRACT

*Pathogenicity of the Gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) depends on a type III secretion system that translocates a cocktail of > 25 type III effector proteins into the plant cell. *In this study, we identified the effector AvrBsT as a suppressor of specific plant defense. AvrBsT belongs to the YopJ/AvrRxv protein family, members of which are predicted to act as proteases and/or acetyltransferases. *AvrBsT suppresses the hypersensitive response (HR) that is elicited by the effector protein AvrBs1 from Xcv in resistant pepper plants. HR suppression occurs inside the plant cell and depends on a conserved predicted catalytic residue of AvrBsT. Yeast two-hybrid based analyses identified plant interaction partners of AvrBs1 and AvrBsT, including a putative regulator of sugar metabolism, SNF1-related kinase 1 (SnRK1), as interactor of AvrBsT. Intriguingly, gene silencing experiments revealed that SnRK1 is required for the induction of the AvrBs1-specific HR. *We therefore speculate that SnRK1 is involved in the AvrBsT-mediated suppression of the AvrBs1-specific HR.


Subject(s)
Bacterial Proteins/metabolism , Plant Diseases/microbiology , Plant Immunity/physiology , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Solanaceae/microbiology , Xanthomonas campestris/pathogenicity , Gene Silencing , Genes, Plant , Host-Pathogen Interactions/physiology , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Solanaceae/metabolism , Xanthomonas campestris/metabolism
18.
New Phytol ; 187(4): 983-1002, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20524995

ABSTRACT

*Type II secretion (T2S) systems of many plant-pathogenic bacteria often secrete cell wall-degrading enzymes into the plant apoplast. *Here, we show that the Xps-T2S system from the plant pathogen Xanthomonas campestris pv vesicatoria (Xcv) promotes disease and contributes to the translocation of effector proteins that are delivered into the plant cell by the type III secretion (T3S) system. *The Xcs-T2S system instead lacks an obvious virulence function. However, individual xcs genes can partially complement mutants in homologous xps genes, indicating that they encode functional components of T2S systems. Enzyme activity assays showed that the Xps system contributes to secretion of proteases and xylanases. We identified the virulence-associated xylanase XynC as a substrate of the Xps system. However, homologs of known T2S substrates from other Xanthomonas spp. are not secreted by the T2S systems from Xcv. Thus, T2S systems from Xanthomonas spp. appear to differ significantly in their substrate specificities. *Transcript analyses revealed that expression of xps genes in Xcv is activated by HrpG and HrpX, key regulators of the T3S system. By contrast, expression of xynC and extracellular protease and xylanase activities are repressed by HrpG and HrpX, suggesting that components and substrates of the Xps system are differentially regulated.


Subject(s)
Bacterial Proteins/genetics , Capsicum/microbiology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Xanthomonas campestris/pathogenicity , Bacterial Proteins/metabolism , Endo-1,4-beta Xylanases/metabolism , Peptide Hydrolases/metabolism , Substrate Specificity , Transcription Factors/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism
19.
Dalton Trans ; 39(7): 1823-30, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20449428

ABSTRACT

[Ag(CF(3)COO)(bpy)] (), [Ag(2)(C(2)F(5)COO)(2)(bpy)] () and [Ag(2)(C(3)F(7)COO)(2)(bpy)] () were prepared and characterized by MS-EI, (1)H, (13)C NMR, variable-temperature IR (VT-IR) spectroscopy (solid sample and evolved volatile species) and thermal analysis. Single-crystal X-ray diffraction data revealed the polymeric structure for [Ag(2)(C(2)F(5)COO)(2)(bpy)] and [Ag(6)(C(3)F(7)COO)(6)(bpy)(4)], with bridging bpy ligand, whereas for [Ag(CF(3)COO)(bpy)] the dimeric system with monodentately linked carboxylate was noted. Mass spectra analysis of () over 30-300 degrees C indicates the presence of binuclear ions [(RCOO)Ag(2)](+) as a main volatile particles, which can be transported in CVD process. VT-IR studies of gases evolved during the thermal decomposition process, demonstrate the presence of fluorocarbon species and CO(2) as the most abundant molecules. Thermal analysis of () revealed a multi-stage decomposition mechanism resulting in Ag(0) formation below 290 degrees C. Compounds were tested for silver metal spray pyrolysis and obtained layers were characterized by scanning electron microscopy (SEM-EDX) and XRD.


Subject(s)
2,2'-Dipyridyl/chemistry , Carboxylic Acids/chemistry , Fluorocarbons/chemistry , Organometallic Compounds/chemistry , Silver/chemistry , Crystallography, X-Ray , Gases/chemistry , Materials Testing , Microscopy, Electron, Scanning , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Volatilization
20.
Mol Plant Pathol ; 10(2): 175-88, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19236567

ABSTRACT

Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.


Subject(s)
Bacterial Proteins/metabolism , Xanthomonas/pathogenicity , Cell Nucleus/ultrastructure , Ions , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Protein Transport , Subcellular Fractions/metabolism , Nicotiana/cytology , Nicotiana/microbiology , Nicotiana/ultrastructure , Transcription, Genetic , Vacuoles/ultrastructure , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...