Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hemasphere ; 8(3): e56, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486859

ABSTRACT

Breakpoint cluster region-Abelson (BCR::ABL1) gene fusion is an essential oncogene in both chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL). While tyrosine kinase inhibitors (TKIs) are effective in up to 95% of CML patients, 50% of Ph+ B-ALL cases do not respond to treatment or relapse. This calls for new therapeutic approaches for Ph+ B-ALL. Previous studies have shown that inhibitors of the thioredoxin (TXN) system exert antileukemic activity against B-ALL cells, particularly in combination with other drugs. Here, we present that peroxiredoxin-1 (PRDX1), one of the enzymes of the TXN system, is upregulated in Ph+ lymphoid as compared to Ph+ myeloid cells. PRDX1 knockout negatively affects the viability of Ph+ B-ALL cells and sensitizes them to TKIs. Analysis of global gene expression changes in imatinib-treated, PRDX1-deficient cells revealed that the nonhomologous end-joining (NHEJ) DNA repair is a novel vulnerability of Ph+ B-ALL cells. Accordingly, PRDX1-deficient Ph+ B-ALL cells were susceptible to NHEJ inhibitors. Finally, we demonstrated the potent efficacy of a novel combination of TKIs, TXN inhibitors, and NHEJ inhibitors against Ph+ B-ALL cell lines and primary cells, which can be further investigated as a potential therapeutic approach for the treatment of Ph+ B-ALL.

2.
Mol Oncol ; 13(5): 1180-1195, 2019 05.
Article in English | MEDLINE | ID: mdl-30861284

ABSTRACT

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogeneous blood cancer characterized by abnormal expansion of immature B cells. Although intensive chemotherapy provides high cure rates in a majority of patients, subtypes harboring certain genetic lesions, such as MLL rearrangements or BCR-ABL1 fusion, remain clinically challenging, necessitating a search for other therapeutic approaches. Herein, we aimed to validate antioxidant enzymes of the thioredoxin system as potential therapeutic targets in BCP-ALL. We observed oxidative stress along with aberrant expression of the enzymes associated with the activity of thioredoxin antioxidant system in BCP-ALL cells. Moreover, we found that auranofin and adenanthin, inhibitors of the thioredoxin system antioxidant enzymes, effectively kill BCP-ALL cell lines and pediatric and adult BCP-ALL primary cells, including primary cells cocultured with bone marrow-derived stem cells. Furthermore, auranofin delayed the progression of leukemia in MLL-rearranged patient-derived xenograft model and prolonged the survival of leukemic NSG mice. Our results unveil the thioredoxin system as a novel target for BCP-ALL therapy, and indicate that further studies assessing the anticancer efficacy of combinations of thioredoxin system inhibitors with conventional anti-BCP-ALL drugs should be continued.


Subject(s)
Auranofin/pharmacology , Diterpenes, Kaurane/pharmacology , Drug Delivery Systems , Neoplasm Proteins/antagonists & inhibitors , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Thioredoxins/antagonists & inhibitors , Animals , Cell Line, Tumor , Female , Fusion Proteins, bcr-abl/metabolism , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thioredoxins/genetics , Thioredoxins/metabolism , Xenograft Model Antitumor Assays
3.
Redox Biol ; 21: 101062, 2019 02.
Article in English | MEDLINE | ID: mdl-30576925

ABSTRACT

L-ascorbate (L-ASC) is a widely-known dietary nutrient which holds promising potential in cancer therapy when given parenterally at high doses. The anticancer effects of L-ASC involve its autoxidation and generation of H2O2, which is selectively toxic to malignant cells. Here we present that thioredoxin antioxidant system plays a key role in the scavenging of extracellularly-generated H2O2 in malignant B-cells. We show that inhibition of peroxiredoxin 1, the enzyme that removes H2O2 in a thioredoxin system-dependent manner, increases the sensitivity of malignant B-cells to L-ASC. Moreover, we demonstrate that auranofin (AUR), the inhibitor of the thioredoxin system that is used as an antirheumatic drug, diminishes the H2O2-scavenging capacity of malignant B-cells and potentiates pharmacological ascorbate anticancer activity in vitro and in vivo. The addition of AUR to L-ASC-treated cells triggers the accumulation of H2O2 in the cells, which results in iron-dependent cytotoxicity. Importantly, the synergistic effects are observed at as low as 200 µM L-ASC concentrations. In conclusion, we observed strong, synergistic, cancer-selective interaction between L-ASC and auranofin. Since both of these agents are available in clinical practice, our findings support further investigations of the efficacy of pharmacological ascorbate in combination with auranofin in preclinical and clinical settings.


Subject(s)
Ascorbic Acid/pharmacology , Drug Resistance, Neoplasm/drug effects , Hydrogen Peroxide/metabolism , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/metabolism , Thioredoxins/metabolism , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line , Cell Line, Tumor , Disease Models, Animal , Humans , Iron/metabolism , Leukemia, B-Cell/drug therapy , Leukemia, B-Cell/pathology , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/pathology , Mice , Xenograft Model Antitumor Assays
4.
Int J Mol Sci ; 19(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071644

ABSTRACT

Lysosomes are conservative organelles with an indispensable role in cellular degradation and the recycling of macromolecules. However, in light of recent findings, it has emerged that the role of lysosomes in cancer cells extends far beyond cellular catabolism and includes a variety of cellular pathways, such as proliferation, metastatic potential, and drug resistance. It has been well described that malignant transformation leads to alterations in lysosomal structure and function, which, paradoxically, renders cancer cells more sensitive to lysosomal destabilization. Furthermore, lysosomes are implicated in the regulation and execution of cell death in response to diverse stimuli and it has been shown that lysosome-dependent cell death can be utilized to overcome apoptosis and drug resistance. Thus, the purpose of this review is to characterize the role of lysosome in cancer therapy and to describe how these organelles impact treatment resistance. We summarized the characteristics of typical inducers of lysosomal cell death, which exert its function primarily via alterations in the lysosomal compartment. The review also presents other anticancer agents with the predominant mechanism of action different from lysosomal destabilization, the activity of which is influenced by lysosomal signaling, including classical chemotherapeutics, kinase inhibitors, monoclonal antibodies, as well as photodynamic therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Lysosomes/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Animals , Cell Death/drug effects , Humans , Lysosomes/pathology , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...