Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proc Natl Acad Sci U S A ; 119(19): e2118385119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35500115

ABSTRACT

Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.


Subject(s)
Histones , Mouse Embryonic Stem Cells , Animals , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Synthetic Lethal Mutations , Tumor Suppressor Proteins
2.
Sci Adv ; 6(26): eaaz4764, 2020 06.
Article in English | MEDLINE | ID: mdl-32637595

ABSTRACT

Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.

3.
Nat Genet ; 52(6): 615-625, 2020 06.
Article in English | MEDLINE | ID: mdl-32393859

ABSTRACT

The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Animals , Chromosomal Proteins, Non-Histone/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockdown Techniques , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lysine/metabolism , Methylation , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/physiology , Myeloid-Lymphoid Leukemia Protein/genetics , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Trans-Activators/genetics
4.
Genes Dev ; 31(19): 2003-2014, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29089422

ABSTRACT

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation , Histones/metabolism , Tudor Domain , Acetylation , Animals , CRISPR-Cas Systems , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Knockout Techniques , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation , Mice , Promoter Regions, Genetic , Protein Binding/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Genes Dev ; 31(20): 2056-2066, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29138278

ABSTRACT

Mutations and translocations within the COMPASS (complex of proteins associated with Set1) family of histone lysine methyltransferases are associated with a large number of human diseases, including cancer. Here we report that SET1B/COMPASS, which is essential for cell survival, surprisingly has a cytoplasmic variant. SET1B, but not its SET domain, is critical for maintaining cell viability, indicating a novel catalytic-independent role of SET1B/COMPASS. Loss of SET1B or its unique cytoplasmic-interacting protein, BOD1, leads to up-regulation of expression of numerous genes modulating fatty acid metabolism, including ADIPOR1 (adiponectin receptor 1), COX7C, SDC4, and COQ7 Our detailed molecular studies identify ADIPOR1 signaling, which is inactivated in both obesity and human cancers, as a key target of SET1B/COMPASS. Collectively, our study reveals a cytoplasmic function for a member of the COMPASS family, which could be harnessed for therapeutic regulation of signaling in human diseases, including cancer.


Subject(s)
Cytochrome P-450 Enzyme System/physiology , Histone-Lysine N-Methyltransferase/physiology , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Survival , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytoplasm/enzymology , Cytoplasm/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , MCF-7 Cells , Mice , Mice, Nude , PR-SET Domains , Protein Subunits/metabolism , Receptors, Adiponectin/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
Nat Genet ; 49(11): 1647-1653, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967912

ABSTRACT

Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Amino Acid Sequence , Animals , Baculoviridae/genetics , CRISPR-Cas Systems , Chromatin/chemistry , Chromatin/metabolism , Drosophila Proteins/deficiency , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Methylation , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera
7.
Genes Dev ; 31(17): 1732-1737, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28939616

ABSTRACT

Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1AΔSET); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1AΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1AΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency.


Subject(s)
Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Animals , Cell Proliferation/genetics , Embryonic Stem Cells/enzymology , Gene Deletion , Gene Expression Regulation, Developmental/genetics , Methylation , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , PR-SET Domains/genetics
8.
Genes Dev ; 31(8): 787-801, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28487406

ABSTRACT

The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Chromatin/genetics , Embryonic Stem Cells/cytology , Gene Deletion , Histone Methyltransferases , Mice , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptional Activation/genetics
9.
Article in English | MEDLINE | ID: mdl-27638352

ABSTRACT

During development, precise spatiotemporal patterns of gene expression are coordinately controlled by cis-regulatory modules known as enhancers. Their crucial role in development helped spur numerous studies aiming to elucidate the functional properties of enhancers within their physiological and disease contexts. In recent years, the role of enhancer malfunction in tissue-specific tumorigenesis is increasingly investigated. Here, we direct our focus to two primary players in enhancer regulation and their role in cancer pathogenesis: MLL3 and MLL4, members of the COMPASS family of histone H3 lysine 4 (H3K4) methyltransferases, and their complex-specific subunit UTX, a histone H3 lysine 27 (H3K27) demethylase. We review the most recent evidence on the underlying roles of MLL3/MLL4 and UTX in cancer and highlight key outstanding questions to help drive future research and contribute to our fundamental understanding of cancer and facilitate identification of therapeutic opportunities.


Subject(s)
DNA-Binding Proteins/physiology , Enhancer Elements, Genetic , Histones/metabolism , Neoplasms/genetics , Protein Processing, Post-Translational , Animals , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic , Gene Expression , Histone-Lysine N-Methyltransferase , Humans , Methylation , Mice
10.
J Neurosci ; 35(15): 6038-50, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25878277

ABSTRACT

Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal , Nerve Degeneration/etiology , Spinal Cord/pathology , tau Proteins/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Immunoprecipitation , Infant , Infant, Newborn , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/complications , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Nerve Tissue Proteins/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Nuclear Proteins/metabolism , Oligodeoxyribonucleotides, Antisense/pharmacology , Phosphorylation , Repressor Proteins/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Zebrafish , tau Proteins/deficiency , tau Proteins/genetics
11.
Evodevo ; 4(1): 20, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23826799

ABSTRACT

BACKGROUND: A complex life cycle, such as complete metamorphosis, is a key innovation that can promote diversification of species. The evolution of a morphologically distinct larval stage is thought to have enabled insects to occupy broader ecological niches and become the most diverse metazoan taxon, yet the extent to which larval and adult morphologies can evolve independently remains unknown. Perturbation of larval limb regeneration allows us to generate larval legs and antennae with altered limb morphologies, which may be used to explore the developmental continuity that might exist between larval and adult appendages. In this study, we determined the roles of several appendage patterning transcription factors, abrupt (ab), dachshund (dac), Distal-less (Dll), and spineless (ss), in the red flour beetle, Tribolium castaneum, during larval appendage regeneration. The functions of these genes in regenerating and non-regenerating limbs were compared using RNA interference. RESULTS: During limb regeneration, dac and ss were necessary to re-pattern the same larval structures as those patterned during embryogenesis. Removal of these two genes led to larval appendage patterning defects that were carried over to the adult legs. Surprisingly, even though maternal knockdown of ab had minimal effects on limb allocation and patterning in the embryo, it was necessary for blastema growth, an earlier phase of regeneration. Finally, knockdown of Dll prevented the blastema-like bumps from re-differentiating into appendages. CONCLUSIONS: Our results suggest that, similar to vertebrates, the re-patterning phase of Tribolium larval limb regeneration relies on the same genes that are used during embryonic limb patterning. Thus, the re-patterning phase of regeneration is likely to be regulated by taxon-specific patterning mechanisms. Furthermore, Ab and Dll appear to play important roles during blastema proliferation and re-differentiation, respectively. Finally, our results show that continuity exists between larval and adult limb patterning, and that larval and adult leg morphologies may be developmentally coupled. Thus, the evolution of imaginal discs may have been a key step towards completely removing any developmental constraints that existed between larval and adult phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...