Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Ginseng Res ; 44(3): 475-482, 2020 May.
Article in English | MEDLINE | ID: mdl-32372869

ABSTRACT

BACKGROUND: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. METHODS: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3ß/ß-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3ß/ß-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. RESULTS: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in antimicrotubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3ß at Ser9 and the active forms of ß-catenin, resulting in activation of the Wnt/GSK-3ß/ß-catenin pathway. Transfection of NSCs with a constitutively active GSK-3ß mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. CONCLUSION: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3ß/ß-catenin pathway by targeting GSK-3ß, potentially having great significance for the treatment of neurodegenerative diseases.

2.
Chin Med ; 6: 40, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22047073

ABSTRACT

BACKGROUND: The prevalence and risk of cardiovascular disease increase after menopause in correlation with the progression of abnormality in the serum lipid profile and the deprivation of estrogen. Erxian decoction (EXD), a Chinese medicinal formulation for treating menopausal syndrome, stimulates ovarian estrogen biosynthesis. This study investigates whether EXD improves the serum lipid profile in a menopausal rat model. METHODS: Twenty-month-old female Sprague Dawley rats were treated with EXD and its constituent fractions. Premarin was administered for comparison. After eight weeks of treatment, rats were sacrificed and the serum levels of total cholesterol, triglyceride, high-density-lipoprotein cholesterol and low-density-lipoprotein cholesterol were determined. The hepatic protein levels of 3-hydroxy-3-methyl-glutaryl-CoA reductase and low-density-lipoprotein receptor were assessed with Western blot. RESULTS: The serum levels of total cholesterol and low-density-lipoprotein cholesterol were significantly lower in the EXD-treated group than in the constituent fractions of EXD or premarin groups. However, the serum levels of triglyceride and high-density-lipoprotein cholesterol were not significantly different from the control groups. Results from Western blot suggest that EXD significantly down-regulated the protein level of 3-hydroxy-3-methyl-glutaryl-CoA reductase and up-regulated low-density-lipoprotein receptor. Conclusion EXD improves serum lipid profile in a menopausal rat model through the suppression of the serum levels of total cholesterol and low-density-lipoprotein cholesterol, possibly through the down-regulation of the 3-hydroxy-3-methyl-glutaryl-CoA and up-regulation of the low-density-lipoprotein receptor.

SELECTION OF CITATIONS
SEARCH DETAIL
...