Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 31(5): 631-6, 2003 May.
Article in English | MEDLINE | ID: mdl-12695352

ABSTRACT

The in vitro metabolism of tolperisone, 1-(4-methyl-phenyl)-2-methyl-3-(1-piperidino)-1-propanone-hydrochloride, a centrally acting muscle relaxant, was examined in human liver microsomes (HLM) and recombinant enzymes. Liquid chromatography-mass spectrometry measurements revealed methyl-hydroxylation (metabolite at m/z 261; M1) as the main metabolic route in HLM, however, metabolites of two mass units greater than the parent compound and the hydroxy-metabolite were also detected (m/z 247 and m/z 263, respectively). The latter was identified as carbonyl-reduced M1, the former was assumed to be the carbonyl-reduced parent compound. Isoform-specific cytochrome P450 (P450) inhibitors, inhibitory antibodies, and experiments with recombinant P450s pointed to CYP2D6 as the prominent enzyme in tolperisone metabolism. CYP2C19, CYP2B6, and CYP1A2 are also involved to a smaller extent. Hydroxymethyl-tolperisone formation was mediated by CYP2D6, CYP2C19, CYP1A2, but not by CYP2B6. Tolperisone competitively inhibited dextromethorphan O-demethylation and bufuralol hydroxylation (K(i) = 17 and 30 microM, respectively). Tolperisone inhibited methyl p-tolyl sulfide oxidation (K(i) = 1200 microM) in recombinant flavin-containing monooxygenase 3 (FMO3) and resulted in a 3-fold (p < 0.01) higher turnover number using rFMO3 than that of control microsomes. Experiments using nonspecific P450 inhibitors-SKF-525A, 1-aminobenzotriazole, 1-benzylimidazole, and anti-NADPH-P450-reductase antibodies-resulted in 61, 47, 49, and 43% inhibition of intrinsic clearance in HLM, respectively, whereas hydroxymethyl-metabolite formation was inhibited completely by nonspecific chemical inhibitors and by 80% with antibodies. Therefore, it was concluded that tolperisone undergoes P450-dependent and P450-independent microsomal biotransformations to the same extent. On the basis of metabolites formed and indirect evidences of inhibition studies, a considerable involvement of a microsomal reductase is assumed.


Subject(s)
Microsomes, Liver/metabolism , Muscle Relaxants, Central/metabolism , Tolperisone/metabolism , Antibodies/metabolism , Area Under Curve , Cytochrome P-450 CYP2D6/immunology , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/immunology , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Gas Chromatography-Mass Spectrometry , Humans , Hydroxylation , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Isoenzymes/immunology , Isoenzymes/metabolism , Muscle Relaxants, Central/pharmacokinetics , Protein Binding , Substrate Specificity , Tolperisone/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...