Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201800

ABSTRACT

This work aims to study the thermal degradation and combustion behavior of single-use masks commonly used during the COVID-19 pandemic. The sudden increase in plastic waste underlines the crucial need for a proper disposal method. Therefore, to develop a suitable method of thermal disposal, it is first necessary to identify the primary waste materials and then study their thermal and flammability behaviors using thermal analysis methods. This research focuses on the characterization of individual parts of the masks, their thermal degradation, and pyrolysis processes via FTIR, TG, and MCC analyses. FTIR analysis indicated that all three masks were made out of polypropylene sheets, while two of the ear straps contained polyamide 6. One of the samples was composed mainly of poly (ethylene terephthalate) fiber and thin inner EPDM rubber. The EPDM ear strap left the highest residue and showed the lowest flammability among all samples. The analysis of heat of combustion and thermogravimetry shows that the most heat is generated above 450 °C. Therefore, for the disposal of single-use masks to be effective, it should be carried out in the temperature range from 450 to 750 °C.

2.
Int J Mol Sci ; 21(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322564

ABSTRACT

Nowadays, regenerative medicine faces a major challenge in providing new, functional materials that will meet the characteristics desired to replenish and grow new tissue. Therefore, this study presents new ceramic-polymer composites in which the matrix consists of tricalcium phosphates covered with blends containing a chemically bounded diclofenac with the biocompatible polymer-poly(3-hydroxyoctanoate), P(3HO). Modification of P(3HO) oligomers was confirmed by NMR, IR and XPS. Moreover, obtained oligomers and their blends were subjected to an in-depth characterisation using GPC, TGA, DSC and AFM. Furthermore, we demonstrate that the hydrophobicity and surface free energy values of blends decreased with the amount of diclofenac modified oligomers. Subsequently, the designed composites were used as a substrate for growth of the pre-osteoblast cell line (MC3T3-E1). An in vitro biocompatibility study showed that the composite with the lowest concentration of the proposed drug is within the range assumed to be non-toxic (viability above 70%). Cell proliferation was visualised using the SEM method, whereas the observation of cell penetration into the scaffold was carried out by confocal microscopy. Thus, it can be an ideal new functional bone tissue substitute, allowing not only the regeneration and restoration of the defect but also inhibiting the development of chronic inflammation.


Subject(s)
Calcium Phosphates/chemistry , Ceramics/chemistry , Diclofenac/chemistry , Polyhydroxyalkanoates/chemistry , Animals , Bone Regeneration/drug effects , Cell Line , Ceramics/pharmacology , Mice , Microscopy, Electrochemical, Scanning , Regenerative Medicine/methods , Tissue Engineering/methods
3.
Pharmaceutics ; 12(5)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397432

ABSTRACT

The formation of solid dispersions with the amorphous drug dispersed in the polymeric matrix improves the dissolution characteristics of poorly soluble drugs. Although they provide an improved absorption after oral administration, the recrystallization, which can occur upon absorption of moisture or during solidification and other formulation stages, serves as a major challenge. This work aims at understanding the amorphization-recrystallization changes of bicalutamide. Amorphous solid dispersions with poly(vinylpyrrolidone-co-vinyl acetate) (PVP/VA) were obtained by either ball milling or spray drying. The applied processes led to drug amorphization as confirmed using X-ray diffraction and differential scanning calorimetry. Due to a high propensity towards mechanical activation, the changes of the crystal structure of physical blends of active pharmaceutical ingredient (API) and polymer upon pressure were also examined. The compression led to drug amorphization or transition from form I to form II polymorph, depending on the composition and applied force. The formation of hydrogen bonds confirmed using infrared spectroscopy and high miscibility of drug and polymer determined using non-isothermal dielectric measurements contributed to the high stability of amorphous solid dispersions. They exhibited improved wettability and dissolution enhanced by 2.5- to 11-fold in comparison with the crystalline drug. The drug remained amorphous upon compression when the content of PVP/VA in solid dispersions exceeded 20% or 33%, in the case of spray-dried and milled systems, respectively.

4.
Polymers (Basel) ; 11(5)2019 May 13.
Article in English | MEDLINE | ID: mdl-31086019

ABSTRACT

The surface modification of cellulose nanocrystals (CNC) is a key intermediate step in the development of new functionalities and the tailoring of nanomaterial properties for specific applications. In the area of polymeric nanocomposites, apart from good interfacial adhesion, the high thermal stability of cellulose nanomaterial is vitally required for the stable processing and improvement of material properties. In this respect, the heterogeneous esterification of CNC with succinic anhydride was investigated in this work in order to obtain CNC with optimised surface and thermal properties. The influence of reaction parameters, such as time, temperature, and molar ratio of reagents, on the structure, morphology and thermal properties, were systematically studied over a wide range of values by DLS, FTIR, XPS, WAXD, SEM and TGA methods. It was found that the degree of surface substitution of CNC increased with the molar ratio of succinic anhydride to cellulose hydroxyl groups (SA:OH), as well as the reaction time, whilst the temperature of reaction showed a moderate effect on the degree of esterification in the range of 70-110 °C. The studies on the thermal stability of modified nanoparticles indicated that there is a critical extent of surface esterification below which only a slight decrease of the initial temperature of degradation was observed in pyrolytic and oxidative atmospheres. A significant reduction of CNC thermal stability was observed only for the longest reaction time (240 min) and the highest molar ratio of SA:OH. This illustrates the possibility of manufacturing thermally stable, succinylated, CNC by controlling the reaction conditions and the degree of esterification.

SELECTION OF CITATIONS
SEARCH DETAIL
...