Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542257

ABSTRACT

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Subject(s)
Heart Failure , Hypertension , Pulmonary Arterial Hypertension , Humans , Connexin 43/metabolism , Pulmonary Arterial Hypertension/drug therapy , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Cardiac Conduction System Disease , Familial Primary Pulmonary Hypertension/complications , Hypertension/drug therapy , Heart Failure/drug therapy , Inflammation/drug therapy
2.
Sci Rep ; 13(1): 20923, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38017033

ABSTRACT

Heart failure (HF) is life-threatening disease due to electro-mechanical dysfunction associated with hemodynamic overload, while alterations of extracellular matrix (ECM) along with perturbed connexin-43 (Cx43) might be key factors involved. We aimed to explore a dual impact of pressure, and volume overload due to aorto-caval fistula (ACF) on Cx43 and ECM as well as effect of renin-angiotensin blockade. Hypertensive Ren-2 transgenic rats (TGR) and normotensive Hannover Sprague-Dawley rats (HSD) that underwent ACF were treated for 15-weeks with trandolapril or losartan. Blood serum and heart tissue samples of the right (RV) and left ventricles (LV) were used for analyses. ACF-HF increased RV, LV and lung mass in HSD and to lesser extent in TGR, while treatment attenuated it and normalized serum ANP, BNP-45 and TBARS. Cx43 protein and its ser368 variant along with PKCε were lower in TGR vs HSD and suppressed in both rat strains due to ACF but prevented more by trandolapril. Pro-hypertrophic PKCδ, collagen I and hydroxyproline were elevated in TGR and increased due to ACF in both rat strains. While SMAD2/3 and MMP2 levels were lower in TGR vs HSD and reduced due to ACF in both strains. Findings point out the strain-related differences in response to volume overload. Disorders of Cx43 and ECM signalling may contribute not only to HF but also to the formation of arrhythmogenic substrate. There is benefit of treatment with trandolapril and losartan indicating their pleiotropic anti-arrhythmic potential. It may provide novel input to therapy.


Subject(s)
Fistula , Heart Failure , Hypertension , Rats , Animals , Rats, Transgenic , Losartan/pharmacology , Renin , Connexin 43/genetics , Rats, Sprague-Dawley , Blood Pressure , Extracellular Matrix
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569306

ABSTRACT

Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.


Subject(s)
Connexin 43 , Melatonin , Rats , Animals , Connexin 43/metabolism , Receptors, Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/prevention & control , Myocytes, Cardiac/metabolism
4.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830700

ABSTRACT

Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.


Subject(s)
Heart Failure , Hypertension , Humans , Arrhythmias, Cardiac , Myocardium , Heart Failure/complications , Myocytes, Cardiac
5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834901

ABSTRACT

The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.


Subject(s)
Heart Failure , Hypertension , Rats , Animals , Male , Rats, Transgenic , Connexin 43 , Heart , Hypertension/metabolism , Fibrosis , Angiotensin II
6.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36290657

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2'-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted.

7.
Biomedicines ; 10(7)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35885012

ABSTRACT

The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of ß-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-ß1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.

8.
Mar Drugs ; 19(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940658

ABSTRACT

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Light Pollution , Stress, Physiological , Animals , Aquatic Organisms , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Connexin 43/metabolism , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/chemistry , Drug Combinations , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/chemistry , Female , Heart/drug effects , Hypertension/complications , Male , Rats , Rats, Inbred SHR , Rats, Wistar
9.
Can J Physiol Pharmacol ; 99(1): 80-88, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33438486

ABSTRACT

Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5. In addition, miRNAs were analyzed as potential markers and therapeutically effective molecules. Expression of miRNA-21 and miRNA-15b showed the most significant changes after irradiation. Atorvastatin and tadalafil normalized changes of miRNA (miRNA-1, miRNA-15b, miRNA-21) expression levels in irradiated hearts. This screening study concludes that administration of specific drugs could mitigate the negative impact of radiation on the heart, but more detailed experiments oriented to other aspects of drug effectiveness and their exact mechanisms are still needed.


Subject(s)
Atorvastatin/administration & dosage , Cardiomyopathies/drug therapy , Heart/drug effects , Radiation Injuries, Experimental/drug therapy , Tadalafil/administration & dosage , Animals , Cardiomyopathies/blood , Cardiomyopathies/diagnosis , Cardiomyopathies/etiology , Free Radicals/blood , Free Radicals/metabolism , Gamma Rays/adverse effects , Heart/radiation effects , Male , Malondialdehyde/blood , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/diagnosis , Radiation Injuries, Experimental/etiology , Rats , Treatment Outcome , Tumor Necrosis Factor-alpha/blood
10.
Antioxidants (Basel) ; 9(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580481

ABSTRACT

Cardiac ß-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced ß-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-ß1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.

11.
Int J Mol Sci ; 21(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325836

ABSTRACT

A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Hyperthyroidism/complications , Hyperthyroidism/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Arrhythmias, Cardiac/drug therapy , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Calcium/metabolism , Disease Management , Disease Susceptibility , Energy Metabolism/drug effects , Humans , Hyperthyroidism/diagnosis , Hyperthyroidism/etiology , Ion Channels/metabolism , Molecular Targeted Therapy , Thyroid Neoplasms/complications , Thyroid Neoplasms/therapy , Ventricular Fibrillation/diagnosis , Ventricular Fibrillation/etiology
12.
Int J Mol Sci ; 21(1)2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31948131

ABSTRACT

Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction and heart transplantation), and heart failure. As a result of oxidative stress action, apoptosis, hypertrophy, and fibrosis may occur. MicroRNAs (miRNAs) represent important endogenous nucleotides that regulate many biological processes, including those involved in heart damage caused by oxidative stress. Oxidative stress can alter the expression level of many miRNAs. These changes in miRNA expression occur mainly via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, calcineurin/nuclear factor of activated T cell (NFAT), or nuclear factor kappa B (NF-κB) pathways. Up until now, several circulating miRNAs have been reported to be potential biomarkers of ROS-related cardiac diseases, including myocardial infarction, hypertrophy, ischemia/reperfusion, and heart failure, such as miRNA-499, miRNA-199, miRNA-21, miRNA-144, miRNA-208a, miRNA-34a, etc. On the other hand, a lot of studies are aimed at using miRNAs for therapeutic purposes. This review points to the need for studying the role of redox-sensitive miRNAs, to identify more effective biomarkers and develop better therapeutic targets for oxidative-stress-related heart diseases.


Subject(s)
Cardiomegaly/metabolism , Coronary Artery Disease/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/genetics , Animals , Cardiomegaly/genetics , Coronary Artery Disease/genetics , Heart Failure/genetics , Humans , MicroRNAs/genetics , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
13.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383853

ABSTRACT

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Ion Channel Gating , Myocardium/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Connexin 43/ultrastructure , Connexins/ultrastructure , Disease Susceptibility , Humans , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardium/ultrastructure
14.
Cells ; 8(11)2019 11 17.
Article in English | MEDLINE | ID: mdl-31744200

ABSTRACT

Therapies intended to mitigate cardiovascular complications cannot be applied in practice without detailed knowledge of molecular mechanisms. Mitochondria, as the end-effector of cardioprotection, represent one of the possible therapeutic approaches. The present review provides an overview of factors affecting the regulation processes of mitochondria at the level of mitochondrial permeability transition pores (mPTP) resulting in comprehensive myocardial protection. The regulation of mPTP seems to be an important part of the mechanisms for maintaining the energy equilibrium of the heart under pathological conditions. Mitochondrial connexin 43 is involved in the regulation process by inhibition of mPTP opening. These individual cardioprotective mechanisms can be interconnected in the process of mitochondrial oxidative phosphorylation resulting in the maintenance of adenosine triphosphate (ATP) production. In this context, the degree of mitochondrial membrane fluidity appears to be a key factor in the preservation of ATP synthase rotation required for ATP formation. Moreover, changes in the composition of the cardiolipin's structure in the mitochondrial membrane can significantly affect the energy system under unfavorable conditions. This review aims to elucidate functional and structural changes of cardiac mitochondria subjected to preconditioning, with an emphasis on signaling pathways leading to mitochondrial energy maintenance during partial oxygen deprivation.


Subject(s)
Cardiolipins/metabolism , Connexin 43/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Myocardium/metabolism , Adenosine Triphosphate/metabolism , Cell Hypoxia , Humans , Mitochondria, Heart/metabolism , Mitochondrial Permeability Transition Pore , Myocardium/cytology , Oxidative Phosphorylation , Signal Transduction
15.
Int J Mol Sci ; 20(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374823

ABSTRACT

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Subject(s)
Connexin 43/metabolism , Extracellular Matrix Proteins/metabolism , Hypertension/metabolism , Myocardium/metabolism , Thyroid Hormones/metabolism , Animals , Hypertension/blood , Male , Rats, Inbred SHR , Rats, Inbred WKY , Thyroid Hormones/blood
16.
J Pineal Res ; 67(4): e12605, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31408542

ABSTRACT

Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 µmol/L), a melatonin receptor blocker (luzindole, 5 µmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.


Subject(s)
Action Potentials/drug effects , Connexin 43/metabolism , Melatonin/pharmacology , Myocardium/metabolism , Potassium/adverse effects , Receptors, Melatonin/metabolism , Ventricular Fibrillation/metabolism , Animals , Male , Myocardium/pathology , Potassium/pharmacology , Rats , Rats, Wistar , Ventricular Fibrillation/chemically induced , Ventricular Fibrillation/pathology , Ventricular Fibrillation/physiopathology
17.
Can J Physiol Pharmacol ; 97(9): 829-836, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30908945

ABSTRACT

Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.


Subject(s)
Connexin 43/metabolism , Matrix Metalloproteinase 2/metabolism , Myocardium/cytology , Oxygen/metabolism , Signal Transduction , Animals , Female , Myocardium/metabolism , Pilot Projects , Pregnancy , Rats
18.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30446908

ABSTRACT

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Subject(s)
Connexin 43/metabolism , Dietary Sucrose/adverse effects , Fatty Acids, Omega-3/pharmacology , Heart/drug effects , Melatonin/pharmacology , Obesity/drug therapy , Signal Transduction/drug effects , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Fatty Acids, Omega-3/metabolism , Female , Melatonin/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Obesity/chemically induced , Obesity/complications , Obesity/metabolism , Protein Kinase C-delta/metabolism , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar
19.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642568

ABSTRACT

Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.


Subject(s)
Antioxidants/pharmacology , Aspirin/pharmacology , Atorvastatin/pharmacology , Connexin 43/metabolism , Heart/radiation effects , MicroRNAs/genetics , Radiation Injuries/metabolism , Animals , Antioxidants/therapeutic use , Aspirin/therapeutic use , Atorvastatin/therapeutic use , Male , Myocardium/metabolism , Radiation Injuries/drug therapy , Radiation, Ionizing , Rats , Rats, Wistar
20.
Article in English | MEDLINE | ID: mdl-30740090

ABSTRACT

Remodeling of the cellular distribution of gap junctions formed mainly by connexin-43 (Cx43) can be related to the increased incidence of cardiac arrhythmias. It has been shown that adaptation to chronic intermittent hypobaric hypoxia (IHH) attenuates the incidence and severity of ischemic and reperfusion ventricular arrhythmias and increases the proportion of anti-arrhythmic n-3 polyunsaturated fatty acids (n-3 PUFA) in heart phospholipids. Wistar rats were exposed to simulated IHH (7,000 m, 8-h/day, 35 exposures) and compared with normoxic controls (N). Cx43 expression, phosphorylation, localization and n-3 PUFA proportion were analyzed in left ventricular myocardium. Compared to N, IHH led to higher expression of total Cx43, its variant phosphorylated at Ser368 [p-Cx43(Ser368)], which maintains "end to end" communication, as well as p-Cx43(Ser364/365), which facilitates conductivity. By contrast, expression of non-phosphorylated Cx43 and p-Cx43(Ser278/289), attenuating intercellular communication, was lower in IHH than in N. IHH also resulted in increased expression of protein kinase A and protein kinase G while casein kinase 1 did not change compared to N. In IHH group, which exhibited reduced incidence of ischemic ventricular arrhythmias, Cx43 and p-Cx43(Ser368) were more abundant at "end to end" gap junctions than in N group and this difference was preserved after acute regional ischemia (10 min). We further confirmed higher n-3 PUFA proportion in heart phospholipids after adaptation to IHH, which was even further increased by ischemia. Our results suggest that adaptation to IHH alters expression, phosphorylation and distribution of Cx43 as well as cardioprotective n-3PUFA proportion suggesting that the anti-arrhythmic phenotype elicited by IHH can be at least partly related to the stabilization of the "end to end" conductivity between cardiomyocytes during brief ischemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...